Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms

被引:104
作者
Johnson, BA
Stehn, JR
Yaffe, MB
Blackwell, TK
机构
[1] Harvard Univ, Sch Med, Ctr Blood Res, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[3] MIT, Ctr Canc Res, Dept Biol, Cambridge, MA 02139 USA
关键词
D O I
10.1074/jbc.M110465200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The immediate early gene tristetraprolin (TTP) is induced transiently in many cell types by numerous extracellular stimuli TTP encodes a zinc finger protein that can bind and destabilize mRNAs that encode tumor necrosis factor-alpha (TNFalpha) and other cytokines. We hypothesize that TTP also has a broader role in growth factor-responsive pathways. In support of this model, we have previously determined that TTP induces apoptosis through the mitochondrial pathway, analogously to certain oncogenes and other immediate-early genes, and that TTP sensitizes cells to the pro-apoptotic signals of TNFa. In this study, we show that TTP and the related proteins TIS11b and TIS11d bind specifically to 14-3-3 proteins and that individual 14-3-3 isoforms preferentially bind to different phosphorylated TTP species. 14-3-3 binding does not appear to inhibit or promote induction of apoptosis by TTP but is one of multiple mechanisms that localize TTP to the cytoplasm. Our results provide the first example of 14-3-3 interacting functionally with an RNA binding protein and binding in vivo to a Type 11 14-3-3 binding site. They also suggest that 14-3-3 binding is part of a complex network of stimuli and interactions that regulate TTP function.
引用
收藏
页码:18029 / 18036
页数:8
相关论文
共 49 条
[1]   The product of the primary response gene BRF1 inhibits the interaction between 14-3-3 proteins and cRaf-1 in the yeast trihybrid system [J].
Bustin, SA ;
McKay, IA .
DNA AND CELL BIOLOGY, 1999, 18 (08) :653-661
[2]   Bone marrow transplantation reproduces the tristetraprolin-deficiency syndrome in recombination activating gene-2 (-/-) mice - Evidence that monocyte/macrophage progenitors may be responsible for TNF alpha overproduction [J].
Carballo, E ;
Gilkeson, GS ;
Blackshear, PJ .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (05) :986-995
[3]   Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
BLOOD, 2000, 95 (06) :1891-1899
[4]   Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
SCIENCE, 1998, 281 (5379) :1001-1005
[5]   Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway [J].
Carballo, E ;
Cao, HP ;
Lai, WS ;
Kennington, EA ;
Campbell, D ;
Blackshear, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :42580-42587
[6]   Roles of tumor necrosis factor-α receptor subtypes in the pathogenesis of the tristetraprolin-deficiency syndrome [J].
Carballo, E ;
Blackshear, PJ .
BLOOD, 2001, 98 (08) :2389-2395
[7]   AU-RICH ELEMENTS - CHARACTERIZATION AND IMPORTANCE IN MESSENGER-RNA DEGRADATION [J].
CHEN, CYA ;
SHYU, AB .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :465-470
[8]  
DUBOIS RN, 1995, CELL GROWTH DIFFER, V6, P523
[9]   TNF-α induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway [J].
Dumitru, CD ;
Ceci, JD ;
Tsatsanis, C ;
Kontoyiannis, D ;
Stamatakis, K ;
Lin, JH ;
Patriotis, C ;
Jenkins, NA ;
Copeland, NG ;
Kollias, G ;
Tsichlis, PN .
CELL, 2000, 103 (07) :1071-1083
[10]   Protein kinesis - Nucleocytoplasmic transport [J].
Gorlich, D ;
Mattaj, IW .
SCIENCE, 1996, 271 (5255) :1513-1518