Potential of mean force for protein-protein interaction studies

被引:104
作者
Jiang, L
Gao, Y
Mao, FL
Liu, ZJ
Lai, LH [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Inst Phys Chem, Beijing 1000871, Peoples R China
[2] State Key Lab Struct Chem Studies Stable & Unstab, Beijing, Peoples R China
关键词
pair potentials; knowledge-based potentials; protein association; protein-protein interaction; protein recognition;
D O I
10.1002/prot.10031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calculating protein-protein interaction energies is crucial for understanding protein-protein associations. On the basis of the methodology of mean-field potential, we have developed an empirical approach to estimate binding free energy for protein-protein interactions. This knowledge-based approach has been used to derive distance-dependent free energies of protein complexes from a nonredundant training set in the Protein Data Bank (PDB), with a careful treatment of homology. We calculate atom pair potentials for 16 pair interactions, which can reflect the importance of hydrophobic interactions and specific hydrogen-bonding interactions. The derived potentials for hydrogen-bonding interactions show a valley of favorable interactions at a distance of approximate to3 Angstrom, corresponding to that of an established hydrogen bond. For the test set of 28 protein complexes, the calculated energies have a correlation coefficient of 0.75 compared with experimental binding free energies. The performance of the method in ranking the binding energies of different protein-protein complexes shows that the energy estimation can be applied to value binding free energies for protein-protein associations. Proteins 2002;46:190-196. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 47 条
[1]   Computational methods to predict binding free energy in ligand-receptor complexes [J].
Ajay ;
Murcko, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1995, 38 (26) :4953-4967
[2]   Structural plasticity in a remodeled protein-protein interface [J].
Atwell, S ;
Ultsch, M ;
DeVos, AM ;
Wells, JA .
SCIENCE, 1997, 278 (5340) :1125-1128
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1977, 80 (02) :319-324
[4]   BINDING OF AMINO-ACID SIDE-CHAINS TO PREFORMED CAVITIES - INTERACTION OF SERINE PROTEINASES WITH TURKEY OVOMUCOID 3RD DOMAINS WITH CODED AND NONCODED P(1) RESIDUES [J].
BIGLER, TL ;
LU, WY ;
PARK, SJ ;
TASHIRO, M ;
WIECZOREK, M ;
WYNN, R ;
LASKOWSKI, M .
PROTEIN SCIENCE, 1993, 2 (05) :786-799
[5]   THE REFINED 1.9 A CRYSTAL-STRUCTURE OF HUMAN ALPHA-THROMBIN - INTERACTION WITH D-PHE-PRO-ARG CHLOROMETHYLKETONE AND SIGNIFICANCE OF THE TYR-PRO-PRO-TRP INSERTION SEGMENT [J].
BODE, W ;
MAYR, I ;
BAUMANN, U ;
HUBER, R ;
STONE, SR ;
HOFSTEENGE, J .
EMBO JOURNAL, 1989, 8 (11) :3467-3475
[7]   Crystal structure of a camel single-domain V-H antibody fragment in complex with lysozyme [J].
Desmyter, A ;
Transue, TR ;
Ghahroudi, MA ;
Thi, MHD ;
Poortmans, F ;
Hamers, R ;
Muyldermans, S ;
Wyns, L .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (09) :803-811
[8]   SMoG: de Novo design method based on simple, fast, and accurate free energy estimates .1. Methodology and supporting evidence [J].
DeWitte, RS ;
Shakhnovich, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (47) :11733-11744
[9]   SMoG: De novo design method based on simple, fast, and accurate free energy estimates .2. Case studies in molecular design [J].
DeWitte, RS ;
Ishchenko, AV ;
Shakhnovich, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (20) :4608-4617
[10]  
HASS GM, 1994, METHOD ENZYMOL, V80, P779