Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins

被引:119
作者
Zhu, JM
Chen, SX
Alvarez, S
Asirvatham, VS
Schachtman, DP
Wu, YJ [1 ]
Sharp, RE
机构
[1] Utah State Univ, Dept Plants Soils & Biometeorol, Logan, UT 84322 USA
[2] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA
[3] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA
关键词
D O I
10.1104/pp.105.070219
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cell wall proteins ( CWPs) play important roles in various processes, including cell elongation. However, relatively little is known about the composition of CWPs in growing regions. We are using a proteomics approach to gain a comprehensive understanding of the identity of CWPs in the maize ( Zea mays) primary root elongation zone. As the first step, we examined the effectiveness of a vacuum infiltration-centrifugation technique for extracting water-soluble and loosely ionically bound ( fraction 1) CWPs from the root elongation zone. The purity of the CWP extract was evaluated by comparing with total soluble proteins extracted from homogenized tissue. Several lines of evidence indicated that the vacuum infiltration-centrifugation technique effectively enriched for CWPs. Protein identification revealed that 84% of the CWPs were different from the total soluble proteins. About 40% of the fraction 1 CWPs had traditional signal peptides and 33% were predicted to be nonclassical secretory proteins, whereas only 3% and 11%, respectively, of the total soluble proteins were in these categories. Many of the CWPs have previously been shown to be involved in cell wall metabolism and cell elongation. In addition, maize has type II cell walls, and several of the CWPs identified in this study have not been identified in previous cell wall proteomics studies that have focused only on type I walls. These proteins include endo-1,3; 1,4-beta-D-glucanase and alpha-L-arabinofuranosidase, which act on the major polysaccharides only or mainly present in type II cell walls.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 59 条
[1]   Feature-based prediction of non-classical and leaderless protein secretion [J].
Bendtsen, JD ;
Jensen, LJ ;
Blom, N ;
von Heijne, G ;
Brunak, S .
PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (04) :349-356
[2]   Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters [J].
Blee, KA ;
Wheatley, ER ;
Bonham, VA ;
Mitchell, GP ;
Robertson, D ;
Slabas, AR ;
Burrell, MM ;
Wojtaszek, P ;
Bolwell, GP .
PLANTA, 2001, 212 (03) :404-415
[3]   Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures:: A critical analysis [J].
Borderies, G ;
Jamet, E ;
Lafitte, C ;
Rossignol, M ;
Jauneau, A ;
Boudart, G ;
Monsarrat, B ;
Esquerrè-Tugayé, MT ;
Boudet, A ;
Pont-Lezica, R .
ELECTROPHORESIS, 2003, 24 (19-20) :3421-3432
[4]   Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes:: Identification by mass spectrometry and bioinformatics [J].
Boudart, G ;
Jamet, E ;
Rossignol, M ;
Lafitte, C ;
Borderies, G ;
Jauneau, A ;
Esquerré-Tugayé, MT ;
Pont-Lezica, R .
PROTEOMICS, 2005, 5 (01) :212-221
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Mixed linkage (1→3),(1→4)-β-D-glucans of grasses [J].
Buckeridge, MS ;
Rayon, C ;
Urbanowicz, B ;
Tiné, MAS ;
Carpita, NC .
CEREAL CHEMISTRY, 2004, 81 (01) :115-127
[7]   Plant proteome analysis [J].
Cánovas, FM ;
Dumas-Gaudot, E ;
Recorbet, G ;
Jorrin, J ;
Mock, HP ;
Rossignol, M .
PROTEOMICS, 2004, 4 (02) :285-298
[8]   Structure and biogenesis of the cell walls of grasses [J].
Carpita, NC .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :445-476
[9]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[10]   Cell wall architecture of the elongating maize coleoptile [J].
Carpita, NC ;
Defernez, M ;
Findlay, K ;
Wells, B ;
Shoue, DA ;
Catchpole, G ;
Wilson, RH ;
McCann, MC .
PLANT PHYSIOLOGY, 2001, 127 (02) :551-565