Control of stochasticity in magnetic field lines

被引:24
作者
Chandre, C
Vittot, M
Ciraolo, G
Ghendrih, P
Lima, R
机构
[1] CNRS Marseille Luminy, Ctr Phys Theor, CNRS, UMR 6207, F-13288 Marseille 9, France
[2] CEA Cadarache, EURATOM Assoc, DRFC, DSM, F-13108 St Paul Les Durance, France
关键词
D O I
10.1088/0029-5515/46/1/004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method of control which is able to create barriers to magnetic field line diffusion by a small modification of the magnetic perturbation. This method of control is based on a localized control of chaos in Hamiltonian systems. The aim is to modify the perturbation (of order epsilon) locally by a small control term (of order E 2) which creates invariant tori acting as barriers to diffusion for Hamiltonian systems with two degrees of freedom. The location of the invariant torus is enforced in the vicinity of the chosen target (at a distance of order E due to the angle dependence). Given the importance of confinement in magnetic fusion devices, the method is applied to two examples with a loss of magnetic confinement. In the case of locked tearing modes, an invariant torus can be restored that aims at showing the current quench and therefore the generation of runaway electrons. In the second case, the method is applied to the control of stochastic boundaries allowing one to define a transport barrier within the stochastic boundary and therefore to monitor the volume of closed field lines.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 46 条
[1]   Asymptotical and mapping methods in study of ergodic divertor magnetic field in a toroidal system [J].
Abdullaev, SS ;
Finken, KH ;
Spatschek, KH .
PHYSICS OF PLASMAS, 1999, 6 (01) :153-174
[2]   On mapping models of field lines in a stochastic magnetic field [J].
Abdullaev, SS .
NUCLEAR FUSION, 2004, 44 (06) :S12-S27
[3]   Twist mapping for the dynamics of magnetic field lines in a tokamak ergodic divertor [J].
Abdullaev, SS ;
Finken, KH ;
Kaleck, A ;
Spatschek, KH .
PHYSICS OF PLASMAS, 1998, 5 (01) :196-210
[4]  
ANTONI V, 1992, PLASMA PHYS CONTR F, V34, P1639, DOI 10.1088/0741-3335/34/11/003
[5]   Tokamap: A Hamiltonian twist map for magnetic field lines in a toroidal geometry [J].
Balescu, R ;
Vlad, M ;
Spineanu, F .
PHYSICAL REVIEW E, 1998, 58 (01) :951-964
[6]   Edge localized mode physics and operational aspects in tokamaks [J].
Bécoulet, M ;
Huysmans, G ;
Sarazin, Y ;
Garbet, X ;
Ghendrih, P ;
Rimini, F ;
Joffrin, E ;
Litaudon, X ;
Monier-Garbet, P ;
Ané, JM ;
Thomas, P ;
Grosman, A ;
Parail, V ;
Wilson, H ;
Lomas, P ;
DeVries, P ;
Zastrow, KD ;
Matthews, GF ;
Lonnroth, J ;
Gerasimov, S ;
Sharapov, S ;
Gryaznevich, M ;
Counsell, G ;
Kirk, A ;
Valovic, M ;
Buttery, R ;
Loarte, A ;
Saibene, G ;
Sartori, R ;
Leonard, A ;
Snyder, P ;
Lao, LL ;
Gohil, P ;
Evans, TE ;
Moyer, RA ;
Kamada, Y ;
Chankin, A ;
Oyama, N ;
Hatae, T ;
Asakura, N ;
Tudisco, O ;
Giovannozzi, E ;
Crisanti, F ;
Perez, CP ;
Koslowski, HR ;
Eich, T ;
Sips, A ;
Horton, L ;
Hermann, A ;
Lang, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (12 A) :A93-A113
[7]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[8]   EVALUATION OF THE STRUCTURE OF ERGODIC FIELDS [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1983, 26 (05) :1288-1291
[9]   NONCANONICAL HAMILTONIAN-MECHANICS AND ITS APPLICATION TO MAGNETIC-FIELD LINE FLOW [J].
CARY, JR ;
LITTLEJOHN, RG .
ANNALS OF PHYSICS, 1983, 151 (01) :1-34
[10]   VACUUM MAGNETIC-FIELDS WITH DENSE FLUX SURFACES [J].
CARY, JR .
PHYSICAL REVIEW LETTERS, 1982, 49 (04) :276-279