The multivalent PDZ domain-containing protein CIPP is a partner of acid-sensing ion channel 3 in sensory neurons

被引:62
作者
Anzai, N [1 ]
Deval, E [1 ]
Schaefer, L [1 ]
Friend, V [1 ]
Lazdunski, M [1 ]
Lingueglia, E [1 ]
机构
[1] Inst Pharmacol Mol & Cellulaire, CNRS, UMR 6097, F-06560 Valbonne, France
关键词
D O I
10.1074/jbc.M201087200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular pH. They are present in the brain, where they are thought to participate in signal transduction associated with local pH variations, and in sensory neurons, where they have been involved in pain perception associated with tissue acidosis and in mechanoperception. The ASIC3 subunit is mainly expressed in dorsal root ganglion neurons. Its expression is associated with a rapidly inactivating current followed by a slowly activating sustained current thought to be required for the tonic sensation of pain caused by acids. We report here the interaction of this channel subunit with the multivalent PDZ (PSD-95 Drosophila discs-large protein, Zonula occludens protein 1) domain-containing protein CIPP. This interaction requires the C-terminal region of ASIC3 and the fourth PDZ domain of CIPP. Co-expression of CIPP and ASIC3 in COS cells increases the maximal ASIC3 peak current density by a factor of 5 and slightly shifts the pH(0.5) for activation from pH 6.2 to pH 6.4. CIPP mRNA is found at a significant level in the same dorsal root ganglion neuronal cell population that expresses the ASIC3 subunit, i.e. mainly in the small nociceptive neurons. CIPP is thus a scaffolding protein that could both enhance the surface expression of ASIC3 and bring together ASIC3 and functionally related proteins in the membrane of sensory neurons.
引用
收藏
页码:16655 / 16661
页数:7
相关论文
共 38 条
[1]   A new member of the acid-sensing ion channel family [J].
Akopian, AN ;
Chen, CC ;
Ding, YN ;
Cesare, P ;
Wood, JN .
NEUROREPORT, 2000, 11 (10) :2217-2222
[2]   Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties [J].
Babinski, K ;
Lê, KT ;
Séguéla, P .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (01) :51-57
[3]   Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+ [J].
Babinski, K ;
Catarsi, S ;
Biagini, G ;
Séguéla, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28519-28525
[4]  
BARON A, 2002, J PHYSL, P485
[5]   The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties [J].
Bassilana, F ;
Champigny, G ;
Waldmann, R ;
deWeille, JR ;
Heurteaux, C ;
Lazdunski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (46) :28819-28822
[6]   Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b [J].
Bässler, EL ;
Ngo-Anh, TJ ;
Geisler, HS ;
Ruppersberg, JP ;
Gründer, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33782-33787
[7]  
Benson CJ, 1999, CIRC RES, V84, P921
[8]   A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor [J].
Cao, TT ;
Deacon, HW ;
Reczek, D ;
Bretscher, A ;
von Zastrow, M .
NATURE, 1999, 401 (6750) :286-290
[9]   Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1 [J].
Champigny, G ;
Voilley, N ;
Waldmann, R ;
Lazdunski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (25) :15418-15422
[10]   A sensory neuron-specific, proton-gated ion channel [J].
Chen, CC ;
England, S ;
Akopian, AN ;
Wood, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10240-10245