Integrated squared error estimation of Cauchy parameters

被引:17
作者
Besbeas, P [1 ]
Morgan, BJT [1 ]
机构
[1] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
关键词
Cauchy distribution; efficiency; influence function; integrated squared error; k-L method; maximum likelihood; robustness;
D O I
10.1016/S0167-7152(01)00153-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that integrated squared error estimation of the parameters of a Cauchy distribution, based on the empirical characteristic function, is simple, robust and efficient. The k-L estimator of Koutrouvelis (Biometrika 69 (1982) 205) is more difficult to use, less robust and at best only marginally more efficient. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:397 / 401
页数:5
相关论文
共 9 条
[1]  
BESBEAS P, 1999, THESIS U KENT UK
[2]  
CAMPBELL EP, 1993, COMMUN STAT THEORY, V22, P2491
[3]  
CAMPBELL EP, 1992, THESIS U KENT UK
[4]  
FEUERVERGER A, 1981, J ROY STAT SOC B MET, V43, P20
[5]   ON SOME FOURIER METHODS FOR INFERENCE [J].
FEUERVERGER, A ;
MCDUNNOUGH, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (374) :379-387
[6]   INTEGRATED SQUARED ERROR ESTIMATION OF PARAMETERS [J].
HEATHCOTE, CR .
BIOMETRIKA, 1977, 64 (02) :255-264
[7]  
KOUTROUVELIS IA, 1982, BIOMETRIKA, V69, P205, DOI 10.1093/biomet/69.1.205
[9]  
Thornton JC, 1977, SANKHYA A, V39, P341