Neuronal growth:: A bistable stochastic process

被引:43
作者
Betz, T [1 ]
Lim, D [1 ]
Käs, JA [1 ]
机构
[1] Inst Soft Matter Phys, D-04109 Leipzig, Germany
关键词
D O I
10.1103/PhysRevLett.96.098103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fundamentally stochastic nature of neuronal growth has hardly been addressed in neuroscience. We report on the stochastic fluctuations of a neuronal growth cone's leading edge movement, the basic step in neuronal growth. Describing the edge movement as a stochastic bistable process leads to an isotropic noise parameter that is successfully used to test the model. An analysis of growth cone motility confirms the model, and predicts that linear changes of the bistable potential, as known from stochastic filtering, result in directed growth cone translocation.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Stochastic resonance in colloidal systems [J].
Babic, D ;
Schmitt, C ;
Poberaj, I ;
Bechinger, C .
EUROPHYSICS LETTERS, 2004, 67 (02) :158-164
[2]  
Ballestrem C, 1998, J CELL SCI, V111, P1649
[3]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[4]   Aperiodic stochastic resonance [J].
Collins, JJ ;
Chow, CC ;
Capela, AC ;
Imhoff, TT .
PHYSICAL REVIEW E, 1996, 54 (05) :5575-5584
[5]   Dynamic phase transitions in cell spreading -: art. no. 108105 [J].
Döbereiner, HG ;
Dubin-Thaler, B ;
Giannone, G ;
Xenias, HS ;
Sheetz, MP .
PHYSICAL REVIEW LETTERS, 2004, 93 (10) :108105-1
[6]   Guiding neuronal growth with light [J].
Ehrlicher, A ;
Betz, T ;
Stuhrmann, B ;
Koch, D ;
Milner, V ;
Raizen, MG ;
Käs, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16024-16028
[7]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287
[8]  
Gardiner C., 2010, STOCHASTIC METHODS H
[9]   THE CYTOSKELETONS OF ISOLATED, NEURONAL GROWTH CONES [J].
GORDONWEEKS, PR .
NEUROSCIENCE, 1987, 21 (03) :977-989
[10]   Brownian motion in a field of force and the diffusion model of chemical reactions [J].
Kramers, HA .
PHYSICA, 1940, 7 :284-304