How Do Reactions at the Anode/Electrolyte Interface Determine the Cathode Performance in Lithium-Ion Batteries?

被引:148
作者
Krueger, Steffen [1 ]
Kloepsch, Richard [1 ]
Li, Jie [1 ]
Nowak, Sascha [1 ]
Passerini, Stefano [1 ]
Winter, Martin [1 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, D-48149 Munster, Germany
关键词
FORMING ELECTROLYTE ADDITIVES; IMPEDANCE REDUCING ADDITIVES; LI-ION; HIGH-PRECISION; SELF-DISCHARGE; SEI FORMATION; GRAPHITE; LICOO2; CELL; TEMPERATURE;
D O I
10.1149/2.022304jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Today, it is common knowledge, that materials science in the field of electrochemical energy storage has to follow a system approach as the interactions between active materials, electrolyte, separator and various inactive materials (binder, current collector, conductive fillers, cell-housing, etc.) which are of similar or even higher importance than the properties and performance parameters of the individual materials only. In particular, for lithium-ion batteries, it is widely accepted that the electrolyte interacts and reacts with the electrodes. Here, we report how reactions at a graphite anode (involving electrolyte decomposition and solid electrolyte interphase (SET) formation), affect the performance of a LiCoO2 (LCO) cathode and the full lithium-ion cell during cycling. We discuss effects of the SET-forming electrolyte additive vinylene carbonate (VC) and the influence of graphite anodes with different surface areas on the cycling stability, end of charge (EOC) and end of discharge (EOD) potentials of the LCO cathode. We will thus elucidate the failure mechanism of LCO/graphite cells by showing that the formation and growth of SEI on the anode, resistance increase in the cathode, electrode and electrolyte degradation in general, as well as capacity and power fade of the lithium ion cell are in fact strongly interrelated processes. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.022304jes] All rights reserved.
引用
收藏
页码:A542 / A548
页数:7
相关论文
共 60 条
[1]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[2]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[3]   CoO2, the end member of the LixCoO2 solid solution [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :1114-1123
[4]   Factors responsible for impedance rise in high power lithium ion batteries [J].
Amine, K ;
Chen, CH ;
Liu, J ;
Hammond, M ;
Jansen, A ;
Dees, D ;
Bloom, I ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2001, 97-8 :684-687
[5]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[6]   On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Levi, E ;
Cohen, YS ;
Kim, HJ ;
Schmidt, M .
ELECTROCHIMICA ACTA, 2002, 47 (27) :4291-4306
[7]  
Barker J., 1998, US Pat., Patent No. 5712059
[8]   Insertion reactions in advanced electrochemical energy storage [J].
Besenhard, JO ;
Winter, M .
PURE AND APPLIED CHEMISTRY, 1998, 70 (03) :603-608
[9]   INORGANIC FILM-FORMING ELECTROLYTE ADDITIVES IMPROVING THE CYCLING BEHAVIOR OF METALLIC LITHIUM ELECTRODES AND THE SELF-DISCHARGE OF CARBON LITHIUM ELECTRODES [J].
BESENHARD, JO ;
WAGNER, MW ;
WINTER, M ;
JANNAKOUDAKIS, AD ;
JANNAKOUDAKIS, PD ;
THEODORIDOU, E .
JOURNAL OF POWER SOURCES, 1993, 44 (1-3) :413-420
[10]   Impedance Reducing Additives and Their Effect on Cell Performance I. LiN(CF3SO2)2 [J].
Burns, J. C. ;
Sinha, N. N. ;
Jain, Gaurav ;
Ye, Hui ;
VanElzen, Collette M. ;
Lamanna, W. M. ;
Xiao, A. ;
Scott, Erik ;
Choi, J. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A1095-A1104