On a collocation B-spline method for the solution of the Navier-Stokes equations

被引:39
作者
Botella, O [1 ]
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
关键词
B-splines; collocation method; Navier-Stokes equations; spurious pressure modes; fractional step methods;
D O I
10.1016/S0045-7930(01)00058-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel B-spline collocation method for the solution of the incompressible Navier-Stokes equations is presented. The discretization employs B-splines of maximum continuity, yielding schemes with high-resolution power. The Navier-Stokes equations are solved by using a fractional step method, where the projection step is considered as a Div-Grad problem, so that no pressure boundary conditions need to be prescribed. Pressure oscillations are prevented by introducing compatible B-spline bases for the velocity and pressure, yielding efficient schemes of arbitrary order of accuracy. The method is applied to two-dimensional benchmark flows, and mass lumping techniques for cost-effective computation of unsteady problems are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 45 条
[1]  
AHLBERG JH, 1975, MATH COMPUT, V29, P761, DOI 10.1090/S0025-5718-1975-0375785-7
[2]  
[Anonymous], 1993, NUMERICAL SOLUTION I
[3]   ON THE ASYMPTOTIC CONVERGENCE OF SPLINE COLLOCATION METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
ARNOLD, DN ;
SARANEN, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (03) :459-472
[4]  
AZAIEZ M, 1994, E W J NUMER MATH, V2, P91
[5]  
Barrett R., 1994, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, V2nd ed.
[6]   PACKAGE FOR CALCULATING WITH B-SPLINES [J].
BOOR, CD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) :441-472
[7]   Benchmark spectral results on the lid-driven cavity flow [J].
Botella, O ;
Peyret, R .
COMPUTERS & FLUIDS, 1998, 27 (04) :421-433
[8]   On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time [J].
Botella, O .
COMPUTERS & FLUIDS, 1997, 26 (02) :107-116
[9]   Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method [J].
Botella, O ;
Peyret, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 36 (02) :125-163
[10]  
BOTELLA O, 1999, VELOCITY PESSURE NAV, P403