MCDOCK: A Monte Carlo simulation approach to the molecular docking problem

被引:118
作者
Liu, M [1 ]
Wang, SM [1 ]
机构
[1] Georgetown Univ, Med Ctr, Inst Cognit & Computat Sci, Drug Discovery Program, Washington, DC 20007 USA
关键词
flexible ligand docking; ligand and protein interaction; molecular recognition; Monte Carlo simulation; structure-based drug discovery;
D O I
10.1023/A:1008005918983
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prediction of the binding mode of a ligand (a drug molecule) to its macromolecular receptor, or molecular docking, is an important problem in rational drug design. We have developed a new docking method in which a non-conventional Monte Carlo (MC) simulation technique is employed. A computer program, MCDOCK, was developed to carry out the molecular docking operation automatically. The current version of the MCDOCK program (version 1.0) allows for the full flexibility of ligands in the docking calculations. The scoring function used in MCDOCK is the sum of the interaction energy between the ligand and its receptor, and the conformational energy of the ligand. To validate the MCDOCK method, 19 small ligands, the binding modes of which had been determined experimentally using X-ray diffraction, were docked into their receptor binding sites. To produce statistically significant results, 20 MCDOCK runs were performed for each protein-ligand complex. It was found that a significant percentage of these MCDOCK runs converge to the experimentally observed binding mode. The root-mean-square (rms) of all non-hydrogen atoms of the ligand between the predicted and experimental binding modes ranges from 0.25 to 1.84 Angstrom for these 19 cases. The computational time for each run on an SGI Indigo2/R10000 varies from less than 1 min to 15 min, depending upon the size and the flexibility of the ligands. Thus MCDOCK may be used to predict the precise binding mode of ligands in lead optimization and to discover novel lead compounds through structure-based database searching.
引用
收藏
页码:435 / 451
页数:17
相关论文
共 41 条
[1]   THE DEVELOPMENT OF VERSION-3 AND VERSION-4 OF THE CAMBRIDGE STRUCTURAL DATABASE SYSTEM [J].
ALLEN, FH ;
DAVIES, JE ;
GALLOY, JJ ;
JOHNSON, O ;
KENNARD, O ;
MACRAE, CF ;
MITCHELL, EM ;
MITCHELL, GF ;
SMITH, JM ;
WATSON, DG .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1991, 31 (02) :187-204
[2]  
ALLEN MP, 1990, COMPUTER SIMULATION, P146
[3]  
Blundell TL, 1996, NATURE, V384, P23
[4]   LUDI - RULE-BASED AUTOMATIC DESIGN OF NEW SUBSTITUENTS FOR ENZYME-INHIBITOR LEADS [J].
BOHM, HJ .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1992, 6 (06) :593-606
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   MONTE-CARLO DOCKING OF OLIGOPEPTIDES TO PROTEINS [J].
CAFLISCH, A ;
NIEDERER, P ;
ANLIKER, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 13 (03) :223-230
[8]  
Caflisch A, 1997, J COMPUT CHEM, V18, P723, DOI 10.1002/(SICI)1096-987X(19970430)18:6<723::AID-JCC1>3.0.CO
[9]  
2-U
[10]   SMoG: de Novo design method based on simple, fast, and accurate free energy estimates .1. Methodology and supporting evidence [J].
DeWitte, RS ;
Shakhnovich, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (47) :11733-11744