Insulin stimulates guanine nucleotide exchange on Rab4 via a wortmannin-sensitive signaling pathway in rat adipocytes

被引:51
作者
Shibata, H
Omata, W
Kojima, I
机构
[1] Department of Cell Biology, Inst. for Molec. and Cell. Reg., Gunma University
关键词
D O I
10.1074/jbc.272.23.14542
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rab4, a member of the Rab family of Ras-related small GTP-binding proteins, has been shown to be associated with GLUT4-containing vesicles and implicated in the insulin action on glucose transport in rat adipocytes. In the present study, we investigated the insulin effects on the guanine nucleotide exchange on Rab4. In electrically permeabilized rat adipocytes, the amount of [S-35]guanosine 5'-O-(3-thiotrisphosphate) (GTP gamma S) bound to Rab4 increased in a time-dependent manner during 45 min of the incubation period. Addition of insulin resulted in about a 2-fold stimulation of the binding of [S-35]GTP gamma S to Rab4, indicating that insulin stimulated the guanine nucleotide exchange on the GTPase. Pretreatment of the cells with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, completely abolished the stimulatory effect of insulin on [S-35]GTP gamma S binding to Rab4. Wortmannin also attenuated the nucleotide binding to Rab4 in the basal cells, Suggesting that phosphatidylinositol 3-kinase activity may be essential for regulation of guanine nucleotide exchange on the GTPase and insulin may up-regulate the exchange activity by stimulating the lipid kinase. Insulin-induced subcellular redistribution of Rab4 from the microsomal fraction to the soluble fraction was also inhibited by wortmannin. These results suggest that insulin stimulates the guanine nucleotide exchange on Rab4 via a phosphatidylinositol 3-kinase-dependent signaling pathway and that Rab4 is one of possible targets of insulin action on intracellular vesicle traffic in rat adipocytes.
引用
收藏
页码:14542 / 14546
页数:5
相关论文
共 44 条
[1]   NONNEURONAL EXPRESSION OF RAB3A - INDUCTION DURING ADIPOGENESIS AND ASSOCIATION WITH DIFFERENT INTRACELLULAR MEMBRANES THAN RAB3D [J].
BALDINI, G ;
SCHERER, PE ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4284-4288
[2]  
BALDINI G, 1991, J BIOL CHEM, V266, P4037
[3]   CLONING OF A RAB3 ISOTYPE PREDOMINATELY EXPRESSED IN ADIPOCYTES [J].
BALDINI, G ;
HOHL, T ;
LIN, HY ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :5049-5052
[4]   PROTEINS REGULATING RAS AND ITS RELATIVES [J].
BOGUSKI, MS ;
MCCORMICK, F .
NATURE, 1993, 366 (6456) :643-654
[5]   ARF PROTEINS - THE MEMBRANE TRAFFIC POLICE [J].
BOMAN, AL ;
KAHN, RA .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (04) :147-150
[6]   GTPase activating protein activity for Rab4 is enriched in the plasma membrane of 3T3-L1 adipocytes. Possible involvement in the regulation of Rab4 subcellular localization [J].
Bortoluzzi, MN ;
Cormont, M ;
Gautier, N ;
VanObberghen, E ;
LeMarchandBrustel, Y .
DIABETOLOGIA, 1996, 39 (08) :899-906
[7]  
CAIN CC, 1992, J BIOL CHEM, V267, P11681
[8]   PHOSPHATIDYLINOSITOL 3-KINASE ACTIVATION IS REQUIRED FOR INSULIN STIMULATION OF PP70 S6 KINASE, DNA-SYNTHESIS, AND GLUCOSE-TRANSPORTER TRANSLOCATION [J].
CHEATHAM, B ;
VLAHOS, CJ ;
CHEATHAM, L ;
WANG, L ;
BLENIS, J ;
KAHN, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) :4902-4911
[9]   INHIBITION OF THE TRANSLOCATION OF GLUT1 AND GLUT4 IN 3T3-L1 CELLS BY THE PHOSPHATIDYLINOSITOL 3-KINASE INHIBITOR, WORTMANNIN [J].
CLARKE, JF ;
YOUNG, PW ;
YONEZAWA, K ;
KASUGA, M ;
HOLMAN, GD .
BIOCHEMICAL JOURNAL, 1994, 300 :631-635
[10]  
CORMONT M, 1993, J BIOL CHEM, V268, P19491