Formation of supported phospholipid bilayers on molecular surfaces: Role of surface charge density and electrostatic interaction

被引:115
作者
Cha, T
Guo, A
Zhu, XY [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] MicroSurfaces Inc, Minneapolis, MN 55421 USA
基金
美国国家科学基金会;
关键词
D O I
10.1529/biophysj.105.061432
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electrostatic interaction is known to play important roles in the adsorption of charged lipids on oppositely charged surfaces. Here we show that, even for charge neutral (zwitterionic) lipids, electrostatic interaction is critical in controlling the adsorption and fusion of lipid vesicles to form supported phospholipid bilayers (SPBs) on surfaces. We use terminally functionalized alkanethiol self-assembled monolayers (SAMs) to systematically control the surface charge density. Charge neutral egg phophatidylcholine (eggPC) vesicles readily fuse into SPBs on either a positively charged 11-aminino-1-undecanethiol SAM or a negatively charged 10-carboxy-1-decanethiol SAM when the density of surface charge groups is >= 80%. These processes depend critically on the buffer environment: fusion of adsorbed vesicles to form SPBs on each charged molecular surface does not occur when the molecular ion of the buffer used is of the opposite charge type. We attribute this to the high entropic repulsion (electric double layer repulsion) due to the large size of molecular counterions. On the other hand, such a critical dependence on buffer type is not observed when charged lipids are used. This study suggests the general importance of controlling electrostatic interaction in the formation of stable SPBs.
引用
收藏
页码:1270 / 1274
页数:5
相关论文
共 23 条
[1]   Preparation, modification, and crystallinity of aliphatic and aromatic carboxylic acid terminated self-assembled monolayers [J].
Arnold, R ;
Azzam, W ;
Terfort, A ;
Wöll, C .
LANGMUIR, 2002, 18 (10) :3980-3992
[2]   Polysaccharide-supported planar bilayer lipid model membranes [J].
Baumgart, T ;
Offenhäusser, A .
LANGMUIR, 2003, 19 (05) :1730-1737
[3]   Two-step formation of streptavidin-supported lipid bilayers by PEG-triggered vesicle fusion. Fluorescence and atomic force microscopy characterization [J].
Berquand, A ;
Mazeran, PE ;
Pantigny, J ;
Proux-Delrouyre, V ;
Laval, JM ;
Bourdillon, C .
LANGMUIR, 2003, 19 (05) :1700-1707
[4]   ALLOGENEIC STIMULATION OF CYTO-TOXIC T-CELLS BY SUPPORTED PLANAR MEMBRANES [J].
BRIAN, AA ;
MCCONNELL, HM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (19) :6159-6163
[5]   Formation and spreading of lipid bilayers on planar glass supports [J].
Cremer, PS ;
Boxer, SG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (13) :2554-2559
[6]   Bivalent-ion-mediated vesicle adsorption and controlled supported phospholipid bilayer formation on molecular phosphate and sulfate layers on gold [J].
Ekeroth, J ;
Konradsson, P ;
Höök, F .
LANGMUIR, 2002, 18 (21) :7923-7929
[7]   Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers [J].
Elender, G ;
Kuhner, M ;
Sackmann, E .
BIOSENSORS & BIOELECTRONICS, 1996, 11 (6-7) :565-577
[8]   Micropattern formation in supported lipid membranes [J].
Groves, JT ;
Boxer, SG .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (03) :149-157
[9]   Creating fluid and air-stable solid supported lipid bilayers [J].
Holden, MA ;
Jung, SY ;
Yang, TL ;
Castellana, ET ;
Cremer, PS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (21) :6512-6513
[10]   Role of hydration and water structure in biological and colloidal interactions [J].
Israelachvili, J ;
Wennerstrom, H .
NATURE, 1996, 379 (6562) :219-225