OsEIN2 is a positive component in ethylene signaling in rice

被引:73
作者
Jun, SH
Han, MJ
Lee, S
Seo, YS
Kim, WT
An, GH [1 ]
机构
[1] Pohang Univ Sci & Technol, Div Mol & Life Sci, Natl Res Lab Plant Funct Genom, Pohang 790784, South Korea
[2] Yonsei Univ, Coll Sci, Dept Biol, Seoul 120749, South Korea
关键词
antisense; EIN2; ethylene; rice; seedling;
D O I
10.1093/pcp/pch033
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
EIN2 is a central signal transducer in the ethylene-signaling pathway, and a unique membrane-anchored protein. By screening a cDNA library, we have isolated a cDNA clone (OsEIN2) that encodes the rice EIN2 homolog. The full-length ORF clone was obtained by reverse transcriptase-polymerase chain reaction. OsEIN2 shares significant amino acid sequence similarity with Arabidopsis EIN2 (57% similarity and 42% identity). Both the numbers and positions of introns and exons in the OsEIN2 and AtEIN2 coding regions are also conserved. To address whether this structural similarity is indicative of functional conservation of the corresponding proteins, we also generated transgenic lines expressing the antisense construct of OsEIN2. Those plants were stunted and shoot elongation was severely inhibited. Their phenotypes were similar to that found with wild-type rice seedlings that were treated with AgNO3, an ethylene signal inhibitor. In the OsEIN2 antisense plants, the expression levels of two ethylene-responsive genes, SC129 and SC255, were decreased compared with the wild types. These results suggest that OsEIN2 is a positive component of the ethylene-signaling pathway in rice, just as AtEIN2 is in Arabidopsis. Our antisense transgenic plants produced approximately 3.5 times more ethylene than the wild-type plants. Expression analysis of rice ACS and ACO genes showed that the transcript levels of OsACS1 and OsACS1 were elevated in the transgenic plants.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 59 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[3]   PROTEIN DATABASE SEARCHES FOR MULTIPLE ALIGNMENTS [J].
ALTSCHUL, SF ;
LIPMAN, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5509-5513
[4]   Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade [J].
Baumberger, N ;
Doesseger, B ;
Guyot, R ;
Diet, A ;
Parsons, RL ;
Clark, MA ;
Simmons, MP ;
Bedinger, P ;
Goff, SA ;
Ringli, C ;
Keller, B .
PLANT PHYSIOLOGY, 2003, 131 (03) :1313-1326
[5]   Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice [J].
Baxter, I ;
Tchieu, J ;
Sussman, MR ;
Boutry, M ;
Palmgren, MG ;
Gribskov, M ;
Harper, JF ;
Axelsen, KB .
PLANT PHYSIOLOGY, 2003, 132 (02) :618-628
[6]   Ethylene: A gaseous signal molecule in plants [J].
Bleecker, AB ;
Kende, H .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :1-+
[7]  
Chae HS, 2000, PLANT CELL PHYSIOL, V41, P354, DOI 10.1093/pcp/41.3.354
[8]   The ethylene-response pathway: signal perception to gene regulation [J].
Chang, C ;
Shockey, JA .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (05) :352-358
[9]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[10]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144