1 The mechanism responsible for blood pressure reduction in spontaneously hypertensive rats (SHR) after prolonged cholecalciferol treatment was studied. Two-week treatment of SHR with 0.125 mg cholecalciferol kg(-1) body weight per day orally caused significant reductions of systolic blood pressure and of the resting perfusion pressure of the mesenteric vascular bed at constant flow. 2 In addition, the treated animals presented a normalization of the maximum vasoconstriction response to noradrenaline and a reduction of the maximum effect of the adrenaline concentration-response curves. This latter effect probably was due to recovery of the impaired Ca2+-dependent K+ channels coupled to alpha(2)-adrenoceptors since it was prevented by apamin. 3 The treatment with cholecalciferol also normalized the smooth muscle cell membrane potential of de-endothelialized mesenteric arteries of SHR and their hyperpolarizing responses to alpha(2)-adrenergic agonists, which were depressed in untreated SHR. 4 In mesenteric rings with endothelium, alpha(2)-adrenergic agonists caused similar hyperpolarizing responses in the SHR and in normotensive Wistar (NWR) and Wistar Kyoto (WKY). In non cholecalciferol-treated SHR the hyperpolarizing mediator involved in this effect was NO, while in NWR it was the endothelium-derived hyperpolarizing factor (EDI-IF). After cholecalciferol treatment, the hyperpolarization induced by alpha(2)-adrenergic agonists in SHR smooth muscle cells was mediated by EDHF, as in NWR. 5 Our results indicate that the hypotensive effect of cholecalciferol in the SHR is probably due to the normalization of vascular reactivity, by restoring the functioning of apamin- and ATP-sensitive K+ channels located in the vascular smooth muscle cell membrane, which are impaired in the SHR.