Interpolating moving least-squares methods for fitting potential-energy surfaces: Further improvement of efficiency via cutoff strategies

被引:24
作者
Kawano, A [1 ]
Tokmakov, IV
Thompson, DL
Wagner, AF
Minkoff, M
机构
[1] Univ Missouri, Dept Chem, Columbia, MO 65211 USA
[2] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
D O I
10.1063/1.2162171
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In standard applications of interpolating moving least squares (IMLS) for fitting a potential-energy surface (PES), all available ab initio points are used. Because remote ab initio points negligibly influence IMLS accuracy and increase IMLS time-to-solution, we present two methods to locally restrict the number of points included in a particular fit. The fixed radius cutoff (FRC) method includes ab initio points within a hypersphere of fixed radius. The density adaptive cutoff (DAC) method includes points within a hypersphere of variable radius depending on the point density. We test these methods by fitting a six-dimensional analytical PES for hydrogen peroxide. Both methods reduce the IMLS time-to-solution by about an order of magnitude relative to that when no cutoff method is used. The DAC method is more robust and efficient than the FRC method. (c) 2006 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 21 条
[1]   STATE-SELECTIVE STUDIES OF T-]R, V ENERGY-TRANSFER - THE H+CO SYSTEM [J].
CHAWLA, GK ;
MCBANE, GC ;
HOUSTON, PL ;
SCHATZ, GC .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (09) :5481-5488
[2]  
DEASPURU GO, 2000, UNPUB P EUR SCH COMP, V75, P193
[3]   Coupled ab initio potential energy surfaces for the reaction Cl(2P)+HCl→ClH+Cl(2P) [J].
Dobbyn, AJ ;
Connor, JNL ;
Besley, NA ;
Knowles, PJ ;
Schatz, GC .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (06) :957-966
[4]   Interpolating moving least-squares methods for fitting potential energy surfaces: Applications to classical dynamics calculations [J].
Guo, Y ;
Kawano, A ;
Thompson, DL ;
Wagner, AF ;
Minkoff, M .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (11) :5091-5097
[5]   MOLECULAR-POTENTIAL ENERGY SURFACES BY INTERPOLATION [J].
ISCHTWAN, J ;
COLLINS, MA .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (11) :8080-8088
[6]   A local interpolation scheme using no derivatives in quantum-chemical calculations [J].
Ishida, T ;
Schatz, GC .
CHEMICAL PHYSICS LETTERS, 1999, 314 (3-4) :369-375
[7]   A local interpolation scheme using no derivatives in potential sampling:: application to O(1D)+H2 system [J].
Ishida, T ;
Schatz, GC .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (09) :1077-1086
[8]   Improving the accuracy of interpolated potential energy surfaces by using an analytical zeroth-order potential function [J].
Kawano, A ;
Guo, Y ;
Thompson, DL ;
Wagner, AF ;
Minkoff, M .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (14) :6414-6422
[9]   A COUPLED CHANNEL STUDY OF HN2 UNIMOLECULAR DECAY BASED ON A GLOBAL ABINITIO POTENTIAL SURFACE [J].
KOIZUMI, H ;
SCHATZ, GC ;
WALCH, SP .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (06) :4130-4135
[10]   A new six-dimensional analytical potential up to chemically significant energies for the electronic ground state of hydrogen peroxide [J].
Kuhn, B ;
Rizzo, TR ;
Luckhaus, D ;
Quack, M ;
Suhm, MA .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (06) :2565-2587