In standard applications of interpolating moving least squares (IMLS) for fitting a potential-energy surface (PES), all available ab initio points are used. Because remote ab initio points negligibly influence IMLS accuracy and increase IMLS time-to-solution, we present two methods to locally restrict the number of points included in a particular fit. The fixed radius cutoff (FRC) method includes ab initio points within a hypersphere of fixed radius. The density adaptive cutoff (DAC) method includes points within a hypersphere of variable radius depending on the point density. We test these methods by fitting a six-dimensional analytical PES for hydrogen peroxide. Both methods reduce the IMLS time-to-solution by about an order of magnitude relative to that when no cutoff method is used. The DAC method is more robust and efficient than the FRC method. (c) 2006 American Institute of Physics.