A multi-modal mixed-state dynamic Bayesian network for robust meeting event recognition from disturbed data

被引:4
作者
Al-Hames, M [1 ]
Rigoll, G [1 ]
机构
[1] Tech Univ Munich, Inst Human Machine Commun, D-80333 Munich, Germany
来源
2005 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), VOLS 1 AND 2 | 2005年
关键词
D O I
10.1109/ICME.2005.1521356
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we present a novel multi-modal mixed-state dynamic Bayesian network (DBN) for robust meeting event classification. The model uses information from lapel microphones, a microphone array and Visual information to structure meetings into segments. Within the DBN a multistream hidden Markov model (HMM) is coupled with a linear dynamical system (LDS) to compensate disturbances in the data. Thereby the HMM is used as driving input for the LDS. The model can handle noise and occlusions in all channels. Experimental results on real meeting data show that the new model is highly preferable to all single-stream approaches. Compared to a baseline multi-modal early Fusion HMM, the new DBN is more than 2.5%, respectively 1.5% better for clear and disturbed data, this corresponds to a relative error reduction of 17%, respectively 9%.
引用
收藏
页码:45 / 48
页数:4
相关论文
共 9 条
[1]  
DIELMANN A, 2004, P IEEE ICASSP MONTR
[2]  
Ghahramani Z, 1998, LECT NOTES ARTIF INT, V1387, P168, DOI 10.1007/BFb0053999
[3]  
Jordan MI, 1998, NATO ADV SCI I D-BEH, V89, P105
[4]  
MCCOWAN I, 2003, P IEEE ICASSP HONG K
[5]  
MCCOWAN I, 2003, 27 IDIAPRR
[6]  
MOORE D, 2002, 07 IDIAPCOM
[7]  
MORGAN N, 2003, P IEEE ICASSP HONG K
[8]  
Pavlovic V., 1999, P IEEE CVPR
[9]  
WALLHOFF F, 2004, P IEEE ICIP SING OCT