Random mutagenesis of the zinc-binding motif of betaine-homocysteine methyltransferase reveals that Gly 214 is essential

被引:18
作者
Breksa, AP [1 ]
Garrow, TA [1 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
关键词
D O I
10.1006/abbi.2001.2751
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Betaine-homocysteine S-methyltransferase (BHMT; EC2.1.1.5) is a zinc metalloenzyme that catalyzes the transfer of a methyl group from betaine to homocysteine to produce dimethylglycine and Met, respectively. This enzyme is a member of a family of zinc-dependent methyltransferases that use thiols or selenols as methyl acceptors and which contain the following motif: G[IL-V]NCX(20, 100)[ALV]X(2)[ILV]GGCCX(3)PX(2)I. We recently reported that the three cysteine residues within this motif function as ligands to zinc in BHMT because changing any of them to alanine abolished zinc-binding and enzyme activity (A. P. Breksa, III, and T. A. Garrow, 1999, Biochemistry 38, 13991-13998). To determine if other amino acid residues in this motif were critical for enzyme function, the two regions defined by the motif in human BHMT, GVNCH(218) and VRYIGGCCGFEPYHI(307), were subjected to semirandom and random site-directed mutagenesis. Mutant enzymes were classified as either active or inactive based on their ability to complement the Met auxotrophy of Escherichia coli strain J5-3. The Gly residue at position 214 was found to be absolutely essential for complementation. The positions occupied by Gly297, Gly298, and Gly301 favored substitutions of small amino acids like Ala and Ser. We hypothesize that these Gly residues provide the necessary flexibility to the Zn-binding region to permit coordination of the metal. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:73 / 80
页数:8
相关论文
共 22 条
[1]   ZINC-FINGER DOMAINS - FROM PREDICTIONS TO DESIGN [J].
BERG, JM .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (01) :14-19
[2]   P-KAPPA-A OF ZINC-BOUND WATER AND NUCLEOPHILICITY OF HYDROXO-CONTAINING SPECIES - ABINITIO CALCULATIONS ON MODELS FOR ZINC ENZYMES [J].
BERTINI, I ;
LUCHINAT, C ;
ROSI, M ;
SGAMELLOTTI, A ;
TARANTELLI, F .
INORGANIC CHEMISTRY, 1990, 29 (08) :1460-1463
[3]   Recombinant human liver betaine-homocysteine S-methyltransferase:: Identification of three cysteine residues critical for zinc binding [J].
Breksa, AP ;
Garrow, TA .
BIOCHEMISTRY, 1999, 38 (42) :13991-13998
[4]   Cytidine deaminases from B-subtilis and E-coli:: Compensating effects of changing zinc coordination and quaternary structure [J].
Carlow, DC ;
Carter, CW ;
Mejlhede, N ;
Neuhard, J ;
Wolfenden, R .
BIOCHEMISTRY, 1999, 38 (38) :12258-12265
[5]  
CARTER CW, 1974, J BIOL CHEM, V249, P6339
[6]  
CARTER CW, 1977, IRON SULFUR PROTEINS, V3, P157
[7]   BETAINE-HOMOCYSTEINE-METHYL-TRANSFERASES .3. THE METHYL DONOR SPECIFICITY OF THE TRANSFERASE ISOLATED FROM PIG LIVER [J].
ERICSON, LE .
ACTA CHEMICA SCANDINAVICA, 1960, 14 (10) :2127-2134
[8]   Zinc stabilizes the SecB binding site of SecA [J].
Fekkes, P ;
de Wit, JG ;
Boorsma, A ;
Friesen, RHE ;
Driessen, AJM .
BIOCHEMISTRY, 1999, 38 (16) :5111-5116
[9]   METHIONINE METABOLISM IN MAMMALS - KINETIC STUDY OF BETAINE-HOMOCYSTEINE METHYLTRANSFERASE [J].
FINKELSTEIN, JD ;
HARRIS, BJ ;
KYLE, WE .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1972, 153 (01) :320-+
[10]   Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase [J].
Garrow, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) :22831-22838