Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect

被引:97
作者
Shiraishi, S
Kibe, M
Yokoyama, T
Kurihara, H
Patel, N
Oya, A
Kaburagi, Y
Hishiyama, Y
机构
[1] Gunma Univ, Grad Sch Engn, Dept Nanomat Syst, Gunma 3768515, Japan
[2] Musashi Inst Technol, Fac Engn, Dept Environm Energy Engn, Setagaya Ku, Tokyo 1588557, Japan
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2006年 / 82卷 / 04期
关键词
D O I
10.1007/s00339-005-3399-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The double layer capacitance properties of multi-walled carbon nanotubes (MWCNTs) prepared by CVD were investigated using propylene carbonate electrolytes. The original MWCNTs are typically entangled tubes with 10 similar to 20 nm outer diameter, around 5 nm inner diameter, and around 220 m(2) g(-1) of BET specific surface area. The galvanostatic measurement (40 mAg(-1), 2 similar to 4 V vs. Li/Li+) in a three-electrode system showed 15 Fg(-1) of gravimetric capacitance and a good rate of this property. Due to the tips opening by thermal oxidation, the specific surface area and the capacitance increased. In contrast, heat-treatment at 3000 degrees C decreased the surface area and the capacitance of the MWCNT due to defect recovery. A small amount (< 1 at. %) of boron was doped to the MWCNT by heat-treatment at 2200 degrees C or 2300 degrees C with a B-contained graphite crucible. The B-doping can improve the specific capacitance per surface area for the MWCNTs while maintaining the tube morphology. This effect of B-doping on the capacitance can be explained by modification of the space charge layer in carbon.
引用
收藏
页码:585 / 591
页数:7
相关论文
共 42 条
[1]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[2]  
2-H
[3]   Investigation of ionic liquids as electrolytes for carbon nanotube electrodes [J].
Barisci, JN ;
Wallace, GG ;
MacFarlane, DR ;
Baughman, RH .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (01) :22-27
[4]   Electrochemical properties of single-wall carbon nanotube electrodes [J].
Barisci, JN ;
Wallace, GG ;
Chattopadhyay, D ;
Papadimitrakopoulos, F ;
Baughman, RH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :E409-E415
[5]   Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions [J].
Barisci, JN ;
Wallace, GG ;
Baughman, RH .
ELECTROCHIMICA ACTA, 2000, 46 (04) :509-517
[6]   CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors [J].
Chatterjee, AK ;
Sharon, M ;
Baneriee, R ;
Neumann-Spallart, M .
ELECTROCHIMICA ACTA, 2003, 48 (23) :3439-3446
[7]   Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors [J].
Chen, JH ;
Li, WZ ;
Wang, DZ ;
Yang, SX ;
Wen, JG ;
Ren, ZF .
CARBON, 2002, 40 (08) :1193-1197
[8]   Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors [J].
Chen, QL ;
Xue, KH ;
Shen, W ;
Tao, FF ;
Yin, SY ;
Xu, W .
ELECTROCHIMICA ACTA, 2004, 49 (24) :4157-4161
[9]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE, DOI DOI 10.1007/978-1-4757-3058-6
[10]  
DUCLAUX L, 2001, TANSO, V196, P9