Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions

被引:252
作者
Jeong, SK [1 ]
Inaba, M [1 ]
Mogi, R [1 ]
Iriyama, Y [1 ]
Abe, T [1 ]
Ogumi, Z [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Energy & Hydrocarbon Chem, Sakyo Ku, Kyoto 6068501, Japan
关键词
D O I
10.1021/la015553h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In situ electrochemical atomic force microscopy (AFM) observation of the basal plane of highly oriented pyrolytic graphite (HOPG) was performed during cyclic voltammetry in 1 M LiClO4/propylene carbonate (PC) containing 3 wt vinylene carbonate (VC), fluoroethylene carbonate (FEC), and ethylene sulfite (ES) in order to clarify the roles of these additives in the formation of a protective surface film on a graphite negative electrode in lithium-ion batteries. Particle-like precipitates appeared on the HOPE surface at the potentials 1.35, 1.15, and 1.05 V versus Li+/Li in PC + VC, PC + FEC, and PC + ES, respectively, and covered the whole surface at lower potentials. No evidence for cointercalation of solvent molecules was observed in the presence of each additive. It was concluded that the layer of the precipitates functions as a protective surface film, which suppresses cointercalation of PC molecules as well as direct solvent decomposition on the surface of the graphite negative electrode.
引用
收藏
页码:8281 / 8286
页数:6
相关论文
共 31 条
  • [1] THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES
    ARAKAWA, M
    YAMAKI, JI
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) : 273 - 280
  • [2] THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES
    AURBACH, D
    EINELI, Y
    MARKOVSKY, B
    ZABAN, A
    LUSKI, S
    CARMELI, Y
    YAMIN, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) : 2882 - 2890
  • [3] A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries
    Bar-Tow, D
    Peled, E
    Burstein, L
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) : 824 - 832
  • [4] FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES
    BESENHARD, JO
    WINTER, M
    YANG, J
    BIBERACHER, W
    [J]. JOURNAL OF POWER SOURCES, 1995, 54 (02) : 228 - 231
  • [5] BIENSAN P, 2000, 10 INT M LITH BATT C
  • [6] ELECTROCHEMICAL DECOMPOSITION OF PROPYLENE CARBONATE ON GRAPHITE
    DEY, AN
    SULLIVAN, BP
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1970, 117 (02) : 222 - &
  • [7] CONDUCTIVITY OF ELECTROLYTES FOR RECHARGEABLE LITHIUM BATTERIES
    DUDLEY, JT
    WILKINSON, DP
    THOMAS, G
    LEVAE, R
    WOO, S
    BLOM, H
    HORVATH, C
    JUZKOW, MW
    DENIS, B
    JURIC, P
    AGHAKIAN, P
    DAHN, JR
    [J]. JOURNAL OF POWER SOURCES, 1991, 35 (01) : 59 - 82
  • [8] FROMMER J, 1998, PROCEDURES SCANNING, P277
  • [9] Electrochemical characteristics of lithiated graphite (LiC6) in PC based electrolytes
    Fujimoto, H
    Fujimoto, M
    Ikeda, H
    Ohshita, R
    Fujitani, S
    Yonezu, I
    [J]. JOURNAL OF POWER SOURCES, 2001, 93 (1-2) : 224 - 229
  • [10] In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes
    Imhof, R
    Novak, P
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) : 1081 - 1087