Quantum computation as geometry

被引:399
作者
Nielsen, MA [1 ]
Dowling, MR [1 ]
Gu, M [1 ]
Doherty, AC [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, St Lucia, Qld 4072, Australia
关键词
D O I
10.1126/science.1121541
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers.
引用
收藏
页码:1133 / 1135
页数:3
相关论文
共 11 条
[1]  
[Anonymous], 1998, TOPOLOGICAL METHODS
[2]  
Berger M., 2003, PANORAMIC VIEW RIEMA
[3]  
Jurdjevic V., 1996, GEOMETRIC CONTROL TH, DOI DOI 10.1017/CBO9780511530036
[4]   Time optimal control in spin systems [J].
Khaneja, N. ;
Brockett, R. ;
Glaser, S.J. .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03) :323081-320811
[5]   Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer [J].
Khaneja, N ;
Glaser, SJ ;
Brockett, R .
PHYSICAL REVIEW A, 2002, 65 (03) :1-11
[6]   Cartan decomposition of SU(2n) and control of spin systems [J].
Khaneja, N ;
Glaser, SJ .
CHEMICAL PHYSICS, 2001, 267 (1-3) :11-23
[7]  
Milnor J., 1969, MORSE THEORY
[8]  
MONTGOMERY R, 2002, MATH SURVEYS MONOGRA, V91
[9]  
NIELSEN MA, IN PRESS QUANT INF C
[10]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744