Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis

被引:103
作者
Nabatiyan, A [1 ]
Krude, T [1 ]
机构
[1] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England
关键词
D O I
10.1128/MCB.24.7.2853-2862.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotic cells, chromatin serves as the physiological template for gene transcription, DNA replication, and repair. Chromatin assembly factor 1 (CAF-1) is the prime candidate protein to mediate assembly of newly replicated DNA into chromatin. To investigate the physiological role of CAF-1 in vivo, we used RNA interference (RNAi) to silence the 60-kDa subunit of CAF-1 (p60) in human cells. Transfection of a small interfering RNA (siRNA) directed against p60 resulted in efficient silencing of p60 expression within 24 h. This silencing led to an induction of programmed cell death in proliferating but not in quiescent human cells. Concomitantly, proliferating cells lacking p60 accumulated DNA double-strand breaks and increased levels of the phosphorylated histone H2A.X Nuclear extracts from cells lacking p60 exhibited a 10-fold reduction of nucleosome assembly activity during DNA synthesis, which was restored upon addition of recombinant p60 protein. Nascent chromatin in cell nuclei lacking p60 showed significantly increased nuclease sensitivity, indicating chromatin assembly defects during DNA synthesis in vivo. Collectively, these data identify CAF-1 as an essential factor not only for S-phase-specific chromatin assembly but also for proliferating cell viability.
引用
收藏
页码:2853 / 2862
页数:10
相关论文
共 45 条
[1]   Histone chaperones and nucleosome assembly [J].
Akey, CW ;
Luger, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (01) :6-14
[2]   Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme [J].
Burden, DA ;
Osheroff, N .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1998, 1400 (1-3) :139-154
[3]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[4]   Analysis of gene function in somatic mammalian cells using small interfering RNAs [J].
Elbashir, SM ;
Harborth, J ;
Weber, K ;
Tuschl, T .
METHODS, 2002, 26 (02) :199-213
[5]   RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo [J].
Enomoto, S ;
McCuneZierath, PD ;
GeramiNejad, M ;
Sanders, MA ;
Berman, J .
GENES & DEVELOPMENT, 1997, 11 (03) :358-370
[6]   Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci [J].
Enomoto, S ;
Berman, J .
GENES & DEVELOPMENT, 1998, 12 (02) :219-232
[7]   Chromatin assembly coupled to DNA repair: A new role for chromatin assembly factor I [J].
Gaillard, PHL ;
Martini, EMD ;
Kaufman, PD ;
Stillman, B ;
Moustacchi, E ;
Almouzni, G .
CELL, 1996, 86 (06) :887-896
[8]  
Game JC, 1999, GENETICS, V151, P485
[9]   Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo [J].
Hoek, M ;
Stillman, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (21) :12183-12188
[10]   Ultraviolet radiation sensitivity and reduction of telomeric silencing Saccharomyces cerevisiae cells lacking chromatin assembly factor-I [J].
Kaufman, PD ;
Kobayashi, R ;
Stillman, B .
GENES & DEVELOPMENT, 1997, 11 (03) :345-357