Lower bounds on the width of Stark-Wannier type resonances

被引:8
作者
Asch, J
Briet, P
机构
[1] Centre de Physique Théorique, CNRS - Luminy, F-13288 Marseille Cedex 9
关键词
D O I
10.1007/BF02100105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the Schrodinger operator -d(2)/dx(2) + Fx + W(x) on L(2)(R) with W bounded and analytic in a strip has no resonances in a region Im E greater than or equal to - exp (-C/F).
引用
收藏
页码:725 / 735
页数:11
相关论文
共 25 条
[1]   EXISTENCE OF STARK LADDER RESONANCES [J].
AGLER, J ;
FROESE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 100 (02) :161-171
[2]   LOWER BOUNDS ON WIDTH OF STARK RESONANCES IN ONE DIMENSION [J].
AHIA, F .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 24 (01) :21-29
[3]   THE LIFETIME OF WANNIER LADDER STATES [J].
AVRON, JE .
ANNALS OF PHYSICS, 1982, 143 (01) :33-53
[4]   SCHRODINGER-OPERATORS WITH AN ELECTRIC-FIELD AND RANDOM OR DETERMINISTIC POTENTIALS [J].
BENTOSELA, F ;
CARMONA, R ;
DUCLOS, P ;
SIMON, B ;
SOUILLARD, B ;
WEDER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (03) :387-397
[5]   STARK WANNIER LADDERS [J].
BENTOSELA, F ;
GRECCHI, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :169-192
[6]   SPECTRAL STABILITY UNDER TUNNELING [J].
BRIET, P ;
COMBES, JM ;
DUCLOS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (01) :133-156
[7]   ON THE LOCATION OF RESONANCES FOR SCHRODINGER-OPERATORS IN THE SEMICLASSICAL LIMIT .1. RESONANCES FREE DOMAINS [J].
BRIET, P ;
COMBES, JM ;
DUCLOS, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 126 (01) :90-99
[8]  
BRIET P, 1996, IN PRESS REV MATH PH
[9]  
BUSLAEV VS, 1990, LENINGRAD MATH J, V1, P287
[10]   STARK LADDER RESONANCES FOR SMALL ELECTRIC-FIELDS [J].
COMBES, JM ;
HISLOP, PD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (02) :291-320