Separating bulk from grain boundary Li ion conductivity in the sol-gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3

被引:139
作者
Breuer, Stefan [1 ,2 ]
Prutsch, Denise [1 ,2 ]
Ma, Qianli [3 ]
Epp, Viktor [1 ,2 ]
Preishuber-Pfluegl, Florian [1 ,2 ]
Tietz, Frank [3 ,4 ]
Wilkening, Martin [1 ,2 ]
机构
[1] Graz Univ Technol NAWI Graz, Christian Doppler Lab Lithium Batteries, A-8010 Graz, Austria
[2] Graz Univ Technol NAWI Graz, Inst Chem & Technol Mat, A-8010 Graz, Austria
[3] Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Helmholtz Inst Munster, D-52425 Julich, Germany
关键词
GLASS-CERAMIC ELECTROLYTES; STATE LITHIUM; CONDUCTORS; LI1+XTI2-XALX(PO4)(3); BATTERIES; IMPEDANCE; NMR;
D O I
10.1039/c5ta06379e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium aluminium titanium phosphate (LATP) belongs to one of the most promising solid electrolytes. Besides sufficiently high electrochemical stability, its use in lithium-based all-solid-state batteries crucially depends on the ionic transport properties. While many impedance studies can be found in literature that report on overall ion conductivities, a discrimination of bulk and grain boundary electrical responses via conductivity spectroscopy has rarely been reported so far. Here, we took advantage of impedance measurements that were carried out at low temperatures to separate bulk contributions from the grain boundary responses. It turned out that bulk ion conductivity is by at least three orders of magnitude higher than ion transport across the grain boundary regions. At temperatures well below ambient long-range Li ion dynamics is governed by activation energies ranging from 0.26 to 0.29 eV depending on the sintering conditions. As an example, at temperatures as low as 173 K, the bulk ion conductivity, measured in N-2 inert gas atmosphere, is in the order of 8.1 x 10(-6) S cm(-1). Extrapolating this value to room temperature yields ca. 3.4 x 10(-3) S cm(-1) at 293 K. Interestingly, exposing the dense pellets to air atmosphere over a long period of time causes a significant decrease of bulk ion transport. This process can be reversed if the phosphate is calcined at elevated temperatures again.
引用
收藏
页码:21343 / 21350
页数:8
相关论文
共 50 条
[1]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[2]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[3]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[4]   Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7.: A parallel NMR and electric impedance study [J].
Arbi, K ;
Mandal, S ;
Rojo, JM ;
Sanz, J .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1091-1097
[5]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[6]   Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2-x(PO4)3 [J].
Bucharsky, E. C. ;
Schell, K. G. ;
Hintennach, A. ;
Hoffmann, M. J. .
SOLID STATE IONICS, 2015, 274 :77-82
[7]   Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J].
Buschmann, Henrik ;
Doelle, Janis ;
Berendts, Stefan ;
Kuhn, Alexander ;
Bottke, Patrick ;
Wilkening, Martin ;
Heitjans, Paul ;
Senyshyn, Anatoliy ;
Ehrenberg, Helmut ;
Lotnyk, Andriy ;
Duppel, Viola ;
Kienle, Lorenz ;
Janek, Juergen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19378-19392
[8]  
Deiseroth H.-J., 2008, ANGEW CHEM, V120, P767
[9]   Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry [J].
Duluard, Sandrine ;
Paillassa, Aude ;
Puech, Laurent ;
Vinatier, Philippe ;
Turq, Viviane ;
Rozier, Patrick ;
Lenormand, Pascal ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Ansart, Florence .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) :1145-1153
[10]  
Epp V., 2015, UNPUB