An improved operator expansion algorithm for direct and inverse scattering computations

被引:43
作者
Coifman, R [1 ]
Goldberg, M
Hrycak, T
Israeli, M
Rokhlin, V
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] York Coll Penn, Dept Phys Sci, York, PA 17405 USA
[3] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[4] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
来源
WAVES IN RANDOM MEDIA | 1999年 / 9卷 / 03期
关键词
D O I
10.1088/0959-7174/9/3/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the first part of the paper we present an implementation of Milder's operator expansion formalism for acoustic scattering from a rough non-periodic surface. Our main contribution to the forward-held calculation is the development of two accurate ways of computing the order-zero normal differentiation operator No. The accuracy of our implementation is tested numerically. In the second part of our paper we apply this approach, combined with a continuation method, to an inverse scattering problem. The resulting scheme performs significantly better than the classical first-order methods.
引用
收藏
页码:441 / 457
页数:17
相关论文
共 18 条
[1]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[2]  
COIFMAN RR, 1986, ANN MATH STUD, V112
[3]  
Colton D, 2013, CLASS APPL MATH
[4]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5
[5]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[6]  
Dahlquist G., 1974, NUMERICAL METHODS
[7]   HIGHER-DIMENSIONAL ELECTROMAGNETIC SCATTERING-THEORY ON C(1) AND LIPSCHITZ-DOMAINS [J].
JAWERTH, B ;
MITREA, M .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) :929-963
[8]   APPLICATION OF THE OPERATOR EXPANSION METHOD TO SCATTERING FROM ONE-DIMENSIONAL MODERATELY ROUGH DIRICHLET RANDOM SURFACES [J].
KACZKOWSKI, PJ ;
THORSOS, EI .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 96 (02) :957-972
[9]  
Kenig C.E., 1994, CBMS REGIONAL C SERI, V83
[10]  
Kirsch A., 1996, INTRO MATH THEORY IN, DOI [DOI 10.1007/978-1-4612-5338-9, 10.1007/978-1-4612-5338-9]