Enlarging the terminal region of nonlinear model predictive control using the support vector machine method

被引:40
作者
Ong, C. J. [1 ]
Sui, D.
Gilbert, E. G.
机构
[1] Natl Univ Singapore, Singapore MIT Alliance, Dept Mech Engn, Singapore 117548, Singapore
[2] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
nonlinear model predictive control; support vector machine; constraints; stability; terminal conditions;
D O I
10.1016/j.automatica.2006.02.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, receding horizon model predictive control (RHMPC) of nonlinear systems subject to input and state constraints is considered. We propose to estimate the terminal region and the terminal cost off-line using support vector machine learning. The proposed approach exploits the freedom in the choices of the terminal region and terminal cost needed for asymptotic stability. The resulting terminal regions are large and, hence provide for large domains of attraction of the RHMPC. The promise of the method is demonstrated with two examples. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1011 / 1016
页数:6
相关论文
共 15 条
[1]  
Allgower F., 2000, NONLINEAR MODEL PRED
[2]  
Cannon M, 2003, P AMER CONTR CONF, P4287
[3]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[4]  
Chen WH, 2001, P AMER CONTR CONF, P3067, DOI 10.1109/ACC.2001.946387
[5]  
Fletcher R., 1981, PRACTICAL METHODS OP
[6]   A stabilizing model-based predictive control algorithm for nonlinear systems [J].
Magni, L ;
De Nicolao, G ;
Magnani, L ;
Scattolini, R .
AUTOMATICA, 2001, 37 (09) :1351-1362
[7]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814
[8]   RECEDING HORIZON CONTROL OF NONLINEAR-SYSTEMS [J].
MAYNE, DQ ;
MICHALSKA, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (07) :814-824
[9]   ROBUST RECEDING HORIZON CONTROL OF CONSTRAINED NONLINEAR-SYSTEMS [J].
MICHALSKA, H ;
MAYNE, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) :1623-1633
[10]   Stability regions for constrained nonlinear systems and their functional characterization via support-vector-machine learning [J].
Ong, CJ ;
Keerthi, SS ;
Gilbert, EG ;
Zhang, ZH .
AUTOMATICA, 2004, 40 (11) :1955-1964