Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers

被引:68
作者
Ghosh, S
Wang, WH
Mendoza, FM
Myers, RC
Li, X
Samarth, N
Gossard, AC
Awschalom, DD [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1587
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiconductor microcavities offer unique means of controlling light - matter interactions in confined geometries, resulting in a wide range of applications in optical communications(1) and inspiring proposals for quantum information processing and computational schemes(2,3). Studies of spin dynamics in microcavities, a new and promising research field, have revealed effects such as polarization beats, stimulated spin scattering and giant Faraday rotation(4-8). Here, we study the electron spin dynamics in optically pumped GaAs microdisc lasers with quantum wells and interface-fluctuation quantum dots(9) in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the discs, and observe an enhancement of the spin-coherence time when the optical excitation is in resonance with a high-quality ( Q similar to 5,000) lasing mode. This resonant enhancement, contrary to expectations from the observed trend in the carrier-recombination time, is then manipulated by altering the cavity design and dimensions. In analogy with devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide new pathways towards spin-dependent quantum optoelectronics.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 22 条
[1]   Microlasers based on photonic crystal concept [J].
Baba, T ;
Inoshita, K ;
Sano, D ;
Nakagawa, A ;
Nozaki, K .
PHOTONIC CRYSTAL MATERIALS AND DEVICES, 2003, 5000 :8-15
[2]   DEFINITION OF A LASER THRESHOLD [J].
BJORK, G ;
KARLSSON, A ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1994, 50 (02) :1675-1680
[3]   SHARP-LINE PHOTOLUMINESCENCE OF EXCITONS LOCALIZED AT GAAS/ALGAAS QUANTUM-WELL INHOMOGENEITIES [J].
BRUNNER, K ;
ABSTREITER, G ;
BOHM, G ;
TRANKLE, G ;
WEIMANN, G .
APPLIED PHYSICS LETTERS, 1994, 64 (24) :3320-3322
[4]   Time-resolved Faraday rotation spectroscopy of spin dynamics in digital magnetic heterostructures [J].
Crooker, SA ;
Awschalom, DD ;
Samarth, N .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1995, 1 (04) :1082-1092
[5]   Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells [J].
Crooker, SA ;
Awschalom, DD ;
Baumberg, JJ ;
Flack, F ;
Samarth, N .
PHYSICAL REVIEW B, 1997, 56 (12) :7574-7588
[6]   Photoinduced magneto-optic Kerr effects in asymmetric semiconductor microcavities -: art. no. 045308 [J].
Cubian, DP ;
Haddad, M ;
André, R ;
Frey, R ;
Roosen, G ;
Diego, JLA ;
Flytzanis, C .
PHYSICAL REVIEW B, 2003, 67 (04)
[7]   Electron and hole spin dynamics in semiconductor quantum dots -: art. no. 113111 [J].
Gündogdu, K ;
Hall, KC ;
Koerperick, EJ ;
Pryor, CE ;
Flatté, ME ;
Boggess, TF ;
Shchekin, OB ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[8]   Manifestation of coherent spin precession in stimulated semiconductor emission dynamics [J].
Hallstein, S ;
Berger, JD ;
Hilpert, M ;
Schneider, HC ;
Ruhle, WW ;
Jahnke, F ;
Koch, SW ;
Gibbs, HM ;
Khitrova, G ;
Oestreich, M .
PHYSICAL REVIEW B, 1997, 56 (12) :R7076-R7079
[9]   Quantum information processing using quantum dot spins and cavity QED [J].
Imamoglu, A ;
Awschalom, DD ;
Burkard, G ;
DiVincenzo, DP ;
Loss, D ;
Sherwin, M ;
Small, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4204-4207
[10]   Room-temperature spin memory in two-dimensional electron gases [J].
Kikkawa, JM ;
Smorchkova, IP ;
Samarth, N ;
Awschalom, DD .
SCIENCE, 1997, 277 (5330) :1284-1287