Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material

被引:923
作者
He, Chunnian
Wu, Shan
Zhao, Naiqin [1 ]
Shi, Chunsheng
Liu, Enzuo
Li, Jiajun
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
high rate; core-shell; nanohybrid; carbon-encapsulated Fe3O4 nanoparticles; 2D nanosheet; in situ synthesis; energy storage; ONE-POT SYNTHESIS; HIGH-RATE PERFORMANCE; REDUCED GRAPHENE; NANOSTRUCTURED MATERIALS; NANOSHEET COMPOSITES; SCALABLE SYNTHESIS; ENERGY-CONVERSION; STORAGE; NANOCRYSTALS; FACILE;
D O I
10.1021/nn401059h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile and scalable in situ synthesis strategy is developed to fabricate carbon-encapsulated Fe3O4 nanoparticles homogeneously embedded in two-dimensional (2D) porous graphitic carbon nanosheets (Fe3O4@C@PGC nanosheets) as a durable high-rate lithium ion battery anode material. With assistance of the surface of NaCl particles, 20 Fe@C@PGC nanosheets can be in situ synthesized by using the Fe(NO3)(3) center dot 9H(2)O and C6H12O6 as the metal and carbon precursor, respectively. After annealing under air, the Fe@C@PGC nanosheets can be converted to Fe3O4@C@PGC nanosheets, in which Fe3O4 nanoparticles (similar to 18.2 nm) coated with conformal and thin onion-like carbon shells are homogeneously embedded in 2D high-conducting carbon nanosheets with a thickness of less than 30 nm. In the constructed architecture, the thin carbon shells can avoid the direct exposure of encapsulated Fe3O4 to the electrolyte and preserve the structural and Interfacial stabilization of Fe3O4 nanoparticles. Meanwhile, the flexible and conductive PGC nanosheets can accommodate the mechanical stress induced by the volume change of embedded Fe3O4@C nanoparticles as well as inhibit the aggregation of Fe3O4 nanoparticles and thus maintain the structural and electrical integrity of the Fe3O4@C@PGC electrode during the lithiation/delithiation processes. As a result, this Fe3O4@C@PGC electrode exhibits superhigh rate capability (858, 587, and 311 mAh/g at 5, 10, and 20 C, respectively, 1 C = 1 A/g) and extremely excellent cyding performance at high rates (only 3.47% capacity loss after 350 cycles at a high rate of 10 C), which is the best one ever reported for an Fe3O4-based electrode including various nanostructured Fe3O4 anode materials, composite electrodes, etc.
引用
收藏
页码:4459 / 4469
页数:11
相关论文
共 42 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   A one-pot microwave-assisted non-aqueous sol-gel approach to metal oxide/graphene nanocomposites for Li-ion batteries [J].
Baek, Seunghwan ;
Yu, Seung-Ho ;
Park, Seung-Keun ;
Pucci, Andrea ;
Marichy, Catherine ;
Lee, Dong-Chan ;
Sung, Yung-Eun ;
Piao, Yuanzhe ;
Pinna, Nicola .
RSC ADVANCES, 2011, 1 (09) :1687-1690
[3]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[4]   One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities [J].
Chen, Jun Song ;
Zhang, Yumiao ;
Lou, Xiong Wen .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (09) :3276-3279
[5]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[6]   High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J].
Cui, Zhi-Min ;
Hang, Ling-Yan ;
Song, Wei-Guo ;
Guo, Yu-Guo .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1162-1166
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[9]   Direct Synthesis of Self-Assembled Ferrite/Carbon Hybrid Nanosheets for High Performance Lithium-Ion Battery Anodes [J].
Jang, Byungchul ;
Park, Mihyun ;
Chae, Oh B. ;
Park, Sangjin ;
Kim, Youngjin ;
Oh, Seung M. ;
Piao, Yuanzhe ;
Hyeon, Taeghwan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) :15010-15015
[10]   Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries [J].
Kang, Eunae ;
Jung, Yoon Seok ;
Cavanagh, Andrew S. ;
Kim, Gi-Heon ;
George, Steven M. ;
Dillon, Anne C. ;
Kim, Jin Kon ;
Lee, Jinwoo .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2430-2438