5′HS5 of the Human β-globin Locus Control Region Is Dispensable for the Formation of the β-globin Active Chromatin Hub

被引:6
作者
Chan, Ping Kei [1 ]
Wai, Albert [2 ]
Philipsen, Sjaak [2 ]
Tan-Un, Kian-Cheng [1 ]
机构
[1] Univ Hong Kong, Dept Zool, Hong Kong, Hong Kong, Peoples R China
[2] Erasmus MC, Dept Cell Biol, Rotterdam, Netherlands
来源
PLOS ONE | 2008年 / 3卷 / 05期
关键词
D O I
10.1371/journal.pone.0002134
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hypersensitive site 5 (5'HS5) of the beta-globin Locus Control Region functions as a developmental stage-specific border in erythroid cells. Here, we have analyzed the role of 5'HS5 in the three dimensional organization of the beta-gene locus using the Chromatin Conformation Capture (3C) technique. The results show that when 5'HS5 is deleted from the locus, both remote and internal regulatory elements are still able to interact with each other in a three-dimensional configuration termed the Active Chromatin Hub. Thus, the absence of 5'HS5 does not have an appreciable effect on the three dimensional organization of the beta-globin locus. This rules out models in which 5'HS5 nucleates interactions with remote and/or internal regulatory elements. We also determined the binding of CTCF, the only defined insulator protein in mammalian cells, to 5'HS5 by using chromatin immunoprecipitation (ChIP) assays. We detect low levels of CTCF binding to 5'HS5 in primitive erythroid cells, in which it functions as a border element. Surprisingly, we also observe binding levels of CTCF to 59HS5 in definitive erythroid cells. Thus, binding of CTCF to 59HS5 per se does not render it a functional border element. This is consistent with the previous data suggesting that CTCF has dual functionality.
引用
收藏
页数:9
相关论文
共 35 条
[1]   The protein CTCF is required for the enhancer blocking activity of vertebrate insulators [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
CELL, 1999, 98 (03) :387-396
[2]   Conservation of sequence and structure flanking the mouse and human β-globin loci:: The β-globin genes are embedded within an array of odorant receptor genes [J].
Bulger, M ;
von Doorninck, JH ;
Saitoh, N ;
Telling, A ;
Farrell, C ;
Bender, MA ;
Felsenfeld, G ;
Axel, R ;
Groudine, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5129-5134
[3]   A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse β-globin locus [J].
Bulger, M ;
Schübeler, D ;
Bender, MA ;
Hamilton, J ;
Farrell, CM ;
Hardison, RC ;
Groudine, M .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (15) :5234-5244
[4]  
Bungert J, 1999, MOL CELL BIOL, V19, P3062
[5]   SUMO conjugation attenuates the activity of the gypsy chromatin insulator [J].
Capelson, Maya ;
Corces, Victor G. .
EMBO JOURNAL, 2006, 25 (09) :1906-1914
[6]   Characterization of the chicken beta-globin insulator [J].
Chung, JH ;
Bell, AC ;
Felsenfeld, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (02) :575-580
[7]   A 5' ELEMENT OF THE CHICKEN BETA-GLOBIN DOMAIN SERVES AS AN INSULATOR IN HUMAN ERYTHROID-CELLS AND PROTECTS AGAINST POSITION EFFECT IN DROSOPHILA [J].
CHUNG, JH ;
WHITELEY, M ;
FELSENFELD, G .
CELL, 1993, 74 (03) :505-514
[8]   Capturing chromosome conformation [J].
Dekker, J ;
Rippe, K ;
Dekker, M ;
Kleckner, N .
SCIENCE, 2002, 295 (5558) :1306-1311
[9]   The effect of distance on long-range chromatin interactions [J].
Dillon, N ;
Trimborn, T ;
Strouboulis, J ;
Fraser, P ;
Grosveld, F .
MOLECULAR CELL, 1997, 1 (01) :131-139
[10]   The active spatial organization of the β-globin locus requires the transcription factor EKLF [J].
Drissen, R ;
Palstra, RJ ;
Gillemans, N ;
Splinter, E ;
Grosveld, F ;
Philipsen, S ;
de Laat, W .
GENES & DEVELOPMENT, 2004, 18 (20) :2485-2490