A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance

被引:63
作者
Mesecke, Nikola [1 ,2 ]
Spang, Anne [3 ]
Deponte, Marcel [2 ]
Herrmann, Johannes M. [1 ]
机构
[1] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
[2] Univ Munich, Inst Physiol Chem, D-81377 Munich, Germany
[3] Univ Basel, Biozentrum, CH-4056 Basel, Switzerland
关键词
D O I
10.1091/mbc.E07-09-0896
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Glutaredoxins represent a ubiquitous family of proteins that catalyze the reduction of disulfide bonds in their substrate proteins by use of reduced glutathione. In an attempt to identify the full complement of glutaredoxins in baker's yeast, we found three so-far uncharacterized glutaredoxin-like proteins that we named Grx6, Grx7, and Grx8. Grx6 and Grx7 represent closely related monothiol glutaredoxins that are synthesized with N-terminal signal sequences. Both proteins are located in the cis-Golgi, thereby representing the first glutaredoxins found in a compartment of the secretory pathway. In contrast to formerly described monothiol glutaredoxins, Grx6 and Grx7, showed a high glutaredoxin activity in vitro. Grx6 and Grx7 overlap in their activity and deletion mutants lacking both proteins show growth defects and a strongly increased sensitivity toward oxidizing agents such as hydrogen peroxide or diamide. Our observations suggest that Grx6 and Grx7 do not play a general role in the oxidative folding of proteins in the early secretory pathway but rather counteract the oxidation of specific thiol groups in substrate proteins.
引用
收藏
页码:2673 / 2680
页数:8
相关论文
共 49 条
[1]   LOCALIZATION OF SED5, A PUTATIVE VESICLE TARGETING MOLECULE, TO THE CIS-GOLGI NETWORK INVOLVES BOTH ITS TRANSMEMBRANE AND CYTOPLASMIC DOMAINS [J].
BANFIELD, DK ;
LEWIS, MJ ;
RABOUILLE, C ;
WARREN, G ;
PELHAM, HRB .
JOURNAL OF CELL BIOLOGY, 1994, 127 (02) :357-371
[2]   The role of cysteine residues as redox-sensitive regulatory switches [J].
Barford, D .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (06) :679-686
[3]   A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein [J].
Bass, R ;
Ruddock, LW ;
Klappa, P ;
Freedman, RB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (07) :5257-5262
[4]   Intracellular signaling by the unfolded protein response [J].
Bernales, Sebastian ;
Papa, Feroz R. ;
Walter, Peter .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :487-508
[5]   Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p [J].
Chuang, JS ;
Schekman, RW .
JOURNAL OF CELL BIOLOGY, 1996, 135 (03) :597-610
[6]   Plasmodium falciparum glutaredoxin-like proteins [J].
Deponte, M ;
Becker, K ;
Rahlfs, S .
BIOLOGICAL CHEMISTRY, 2005, 386 (01) :33-40
[7]   The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome [J].
Dietrich, FS ;
Voegeli, S ;
Brachat, S ;
Lerch, A ;
Gates, K ;
Steiner, S ;
Mohr, C ;
Pöhlmann, R ;
Luedi, P ;
Choi, SD ;
Wing, RA ;
Flavier, A ;
Gaffney, TD ;
Phillippsen, P .
SCIENCE, 2004, 304 (5668) :304-307
[8]   Catalysis of disulphide bond formation in the endoplasmic reticulum [J].
Ellgaard, L .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2004, 32 :663-667
[9]   Quality control in the endoplasmic reticulum [J].
Ellgaard, L ;
Helenius, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (03) :181-191
[10]   Locating proteins in the cell using TargetP, SignalP and related tools [J].
Emanuelsson, Olof ;
Brunak, Soren ;
von Heijne, Gunnar ;
Nielsen, Henrik .
NATURE PROTOCOLS, 2007, 2 (04) :953-971