Common physical basis of macromolecule-binding sites in proteins

被引:21
作者
Chen, Yao Chi [1 ,2 ]
Lim, Carmay [1 ,2 ]
机构
[1] Acad Sinica, Inst Biomed Sci, Taipei 115, Taiwan
[2] Natl Tsing Hua Univ, Dept Chem, Hsinchu 300, Taiwan
关键词
D O I
10.1093/nar/gkn868
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-DNA/RNA/protein interactions play critical roles in many biological functions. Previous studies have focused on the different features characterizing the different macromolecule-binding sites and approaches to detect these sites. However, no common unique signature of these sites had been reported. Thus, this work aims to provide a 'common' principle dictating the location of the different macromolecule-binding sites founded upon fundamental principles of binding thermodynamics. To achieve this aim, a comprehensive set of structurally nonhomologous DNA-, RNA-, obligate protein-and nonobligate protein-binding proteins, both free and bound to their respective macromolecules, was created and a novel strategy for detecting clusters of residues with electrostatic or steric strain given the protein structure was developed. The results show that regardless of the macromolecule type, the binding strength and conformational changes upon binding, macromolecule-binding sites are energetically less stable than nonmacromolecule-binding sites. They also reveal new energetic features distinguishing DNA-from RNA-binding sites and obligate protein- from nonobligate protein-binding sites in both free/bound protein structures.
引用
收藏
页码:7078 / 7087
页数:10
相关论文
共 69 条
[1]   Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information [J].
Ahmad, S ;
Gromiha, MM ;
Sarai, A .
BIOINFORMATICS, 2004, 20 (04) :477-486
[2]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[3]   Statistical analysis and prediction of protein-protein interfaces [J].
Bordner, AJ ;
Abagyan, R .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (03) :353-366
[4]   Insights into protein-protein interfaces using a Bayesian network prediction method [J].
Bradford, James R. ;
Needham, Chris J. ;
Bulpitt, Andrew J. ;
Westhead, David R. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 362 (02) :365-386
[5]   Improved prediction of protein-protein binding sites using a support vector machines approach [J].
Bradford, JR ;
Westhead, DR .
BIOINFORMATICS, 2005, 21 (08) :1487-1494
[6]  
Brenner SE, 2000, PROTEIN SCI, V9, P197
[7]   Stability of macromolecular complexes [J].
Brooijmans, N ;
Sharp, KA ;
Kuntz, ID .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 48 (04) :645-653
[8]   Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces [J].
Burgoyne, Nicholas J. ;
Jackson, Richard M. .
BIOINFORMATICS, 2006, 22 (11) :1335-1342
[9]  
Case D.A., 2006, AMBER 9
[10]   Prediction of interface residues in protein-protein complexes by a consensus neural network method: Test against NMR data [J].
Chen, HL ;
Zhou, HX .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 (01) :21-35