The cytokinesis formins from the nematode worm and fission yeast differentially mediate actin filament assembly

被引:49
作者
Neidt, Erin M. [1 ]
Skau, Colleen T. [1 ]
Kovar, David R. [1 ,2 ]
机构
[1] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1074/jbc.M803734200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Formins drive actin filament assembly for diverse cellular processes including motility, establishing polarity, and cell division. To investigate the mechanism of contractile ring assembly in animal cells, we directly compared the actin assembly properties of formins required for cytokinesis in the nematode worm early embryo (CYK-1) and fission yeast (Cdc12p). Like Cdc12p and most other formins, CYK-1 nucleates actin filament assembly and remains processively associated with the elongating barbed end while facilitating the addition of profilin-actin above the theoretical diffusion-limited rate. However, specific properties differ significantly between Cdc12p and CYK-1. Cdc12p efficiently nucleates filaments that in the presence of profilin elongate at approximately the same rate as control filaments without formin (similar to 10.0 subunits/s). CYK-1 is an inefficient nucleator but allows filaments to elongate profilin-actin 6-fold faster than Cdc12p (similar to 60 subunits/s). Both Cdc12p and CYK-1 bind to pre-assembled actin filaments with low nanomolar affinity, but CYK-1 dissociates 2 orders of magnitude more quickly. However, CYK-1 rapidly re-associates with free barbed ends. Cdc12p allows barbed ends to elongate in the presence of excess capping protein, whereas capping protein inhibits CYK-1-mediated actin assembly. Therefore, these evolutionarily diverse formins can drive contractile ring assembly by a generally similar mechanism, but cells with unique dimensions and physical parameters might require proteins with carefully tuned actin assembly properties.
引用
收藏
页码:23872 / 23883
页数:12
相关论文
共 62 条
[1]   Kinetic mechanism of end-to-end annealing of actin filaments [J].
Andrianantoandro, E ;
Blanchoin, L ;
Sept, D ;
McCammon, JA ;
Pollard, TD .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (04) :721-730
[2]   Role of polo kinase and Mid1p in determining the site of cell division in fission yeast [J].
Bähler, J ;
Steever, AB ;
Wheatley, S ;
Wang, YL ;
Pringle, JR ;
Gould, KL ;
McCollum, D .
JOURNAL OF CELL BIOLOGY, 1998, 143 (06) :1603-1616
[3]   Comparative analysis of cytokinesis in buddina yeast, fission yeast and animal cells [J].
Balasubramanian, MK ;
Bi, EF ;
Glotzer, M .
CURRENT BIOLOGY, 2004, 14 (18) :R806-R818
[4]   THE SCHIZOSACCHAROMYCES-POMBE CDC3+ GENE ENCODES A PROFILIN ESSENTIAL FOR CYTOKINESIS [J].
BALASUBRAMANIAN, MK ;
HIRANI, BR ;
BURKE, JD ;
GOULD, KL .
JOURNAL OF CELL BIOLOGY, 1994, 125 (06) :1289-1301
[5]  
Balasubramanian MK, 1998, GENETICS, V149, P1265
[6]   Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins [J].
Blanchoin, L ;
Amann, KJ ;
Higgs, HN ;
Marchand, JB ;
Kaiser, DA ;
Pollard, TD .
NATURE, 2000, 404 (6781) :1007-1011
[7]   A cytokinesis furrow is positioned by two consecutive signals [J].
Bringmann, H ;
Hyman, AA .
NATURE, 2005, 436 (7051) :731-734
[8]  
Chang F, 1996, J CELL SCI, V109, P131
[9]   Movement of a cytokinesis factor cdcl2p to the site of cell division [J].
Chang, F .
CURRENT BIOLOGY, 1999, 9 (15) :849-852
[10]   cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin [J].
Chang, F ;
Drubin, D ;
Nurse, P .
JOURNAL OF CELL BIOLOGY, 1997, 137 (01) :169-182