Vacuolar H+-ATPase activity is required for Endocytic and secretory trafficking in Arabidopsis

被引:688
作者
Dettmer, J
Hong-Hermesdorf, A
Stierhof, YD
Schumacher, K
机构
[1] Univ Tubingen, Ctr Plant Mol Biol Plant Physiol, D-72076 Tubingen, Germany
[2] Univ Tubingen, Ctr Plant Mol Biol Microscopy, D-72076 Tubingen, Germany
关键词
D O I
10.1105/tpc.105.037978
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H+-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.
引用
收藏
页码:715 / 730
页数:16
相关论文
共 81 条
[1]  
ALI MS, 1986, PLANT PHYSIOL, V81, P222, DOI 10.1104/pp.81.1.222
[2]   An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes [J].
Aniento, F ;
Gu, F ;
Parton, RG ;
Gruenberg, J .
JOURNAL OF CELL BIOLOGY, 1996, 133 (01) :29-41
[3]   AtVPS45 complex formation at the trans-Golgi network [J].
Bassham, DC ;
Sanderfoot, AA ;
Kovaleva, V ;
Zheng, HY ;
Raikhel, NV .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (07) :2251-2265
[4]   Vacuole membrane fusion:: Vo functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel [J].
Bayer, MJ ;
Reese, C ;
Bühler, S ;
Peters, C ;
Mayer, A .
JOURNAL OF CELL BIOLOGY, 2003, 162 (02) :211-222
[5]   Membrane recycling occurs during asymmetric tip growth and cell plate formation in Fucus distichus zygotes [J].
Belanger, KD ;
Quatrano, RS .
PROTOPLASMA, 2000, 212 (1-2) :24-37
[6]   IMMUNOLOGICAL CHARACTERIZATION OF 2 DOMINANT TONOPLAST POLYPEPTIDES [J].
BETZ, M ;
DIETZ, KJ .
PLANT PHYSIOLOGY, 1991, 97 (04) :1294-1301
[7]   FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells [J].
Bolte, S ;
Talbot, C ;
Boutte, Y ;
Catrice, O ;
Read, ND ;
Satiat-Jeunemaitre, B .
JOURNAL OF MICROSCOPY, 2004, 214 :159-173
[8]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[9]   EVIDENCE FOR AN ATP-DEPENDENT PROTON PUMP ON THE GOLGI OF CORN COLEOPTILES [J].
CHANSON, A ;
TAIZ, L .
PLANT PHYSIOLOGY, 1985, 78 (02) :232-240
[10]  
CLAGUE MJ, 1994, J BIOL CHEM, V269, P21