HIV-1 integrase: A target for new AIDS chemotherapeutics

被引:78
作者
Anthony, NJ [1 ]
机构
[1] Merck Res Labs, Dept Med Chem, West Point, PA 19486 USA
关键词
D O I
10.2174/1568026043388448
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Since the beginning of the HIV epidemic almost 70 million people have been infected with HIV. It is estimated that 42 million people are currently living with HIV/AIDS. The spread of HIV continues throughout the world and current estimates indicate that in 2002, 5 million people were newly infected with HIV and 3 million people died. Current treatments employ a combination of therapeutic agents that target the viral reverse transcriptase and protease enzymes and viral entry. However the clinical benefit of these agents is often limited due to issues of regimen compliance, significant side effects, and the emergence of viral strains that are drug resistant. The introduction of novel agents that interfere with alternate stages in the viral life cycle represent potential solutions to these problems. The integration of the HIV genome into the cellular chromosome, a process catalyzed by the viral enzyme integrase, has been shown to be essential for viral replication. Since HIV integrase has no direct cellular counterpart it presents itself as an attractive target for therapeutic intervention. This review summarizes recent and promising developments both in the HIV integrase field and the global quest for therapeutically useful inhibitors of HIV integrase.
引用
收藏
页码:979 / 990
页数:12
相关论文
共 76 条
[1]  
ANTHONY NJ, 2002, Patent No. [0230931, 00230931]
[2]   HIV-1 integrase: Structural organization, conformational changes, and catalysis [J].
Asante-Appiah, E ;
Skalka, AM .
ADVANCES IN VIRUS RESEARCH, VOL 52, 1999, 52 :351-369
[3]  
Bernardi F, 2002, CHEM PHYS LETT, V362, P1, DOI 10.1016/S0009-2614(02)01027-8
[4]   Target-sequence preferences of HIV-1 integration complexes in vitro [J].
Bor, YC ;
Miller, MD ;
Bushman, FD ;
Orgel, LE .
VIROLOGY, 1996, 222 (01) :283-288
[5]   Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration [J].
Cai, M ;
Huang, Y ;
Zheng, R ;
Wei, SQ ;
Ghirlando, R ;
Lee, MS ;
Craigie, R ;
Gronenborn, AM ;
Clore, GM .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (10) :903-909
[6]   Solution structure of the N-terminal zinc binding domain of HIV-1 integrase [J].
Cai, ML ;
Zheng, RL ;
Caffrey, M ;
Craigie, R ;
Clore, GM ;
Gronenborn, AM .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :567-577
[7]   The barrier-to-autointegration protein is a host factor for HIV type 1 integration [J].
Chen, HM ;
Engelman, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15270-15274
[8]  
Chen I.-Jen, 2002, Current Drug Targets - Infectious Disorders, V2, P217, DOI 10.2174/1568005023342380
[9]   Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding [J].
Chen, JCH ;
Krucinski, J ;
Miercke, LJW ;
Finer-Moore, JS ;
Tang, AH ;
Leavitt, AD ;
Stroud, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8233-8238
[10]   HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells [J].
Cherepanov, P ;
Maertens, G ;
Proost, P ;
Devreese, B ;
Van Beeumen, J ;
Engelborghs, Y ;
De Clercq, E ;
Debyser, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (01) :372-381