Nonlinear filtering methods for harmonic retrieval and model order selection in Gaussian and non-Gaussian noise

被引:18
作者
Hilands, TW [1 ]
Thomopoulos, SCA [1 ]
机构
[1] INTELNET INC,STATE COLL,PA 16803
关键词
D O I
10.1109/78.564186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of high-resolution parameter estimation (harmonic retrieval) and model-order selection for superimposed sinusoids, The harmonic retrieval problem is analyzed using a nonlinear parameter estimation approach. Estimation is performed using several nonlinear estimators with signals embedded in white and colored Gaussian noise. Simulation results demonstrate that the nonlinear filters perform close to the Cramer-Rao bound. Model order selection is performed in Gaussian and non-Gaussian noise. The problem is formulated using a multiple hypothesis testing approach with assumed known a priori probabilities for each hypothesis. Parameter estimation is performed using the extended Kalman filter when the noise is Gaussian. The extended high-order filter (EHOF) is implemented in non-Gaussian noise, Simulation results demonstrate excellent performance in selecting the correct model order and estimating the signal parameters.
引用
收藏
页码:982 / 995
页数:14
相关论文
共 29 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[3]  
BAYGUN B, 1990, P 5 IEEE ASSP WORKSH, P168
[4]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[5]   SEQUENTIAL ESTIMATION WHEN MEASUREMENT FUNCTION NONLINEARITY IS COMPARABLE TO MEASUREMENT ERROR [J].
DENHAM, WF ;
PINES, S .
AIAA JOURNAL, 1966, 4 (06) :1071-+
[6]   SIMULTANEOUS SIGNAL DETECTION AND ESTIMATION UNDER MULTIPLE HYPOTHESES [J].
FREDRIKSEN, A ;
MIDDLETON, D ;
VANDELINDE, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (05) :607-+
[7]  
FRIEDLANDER B, 1981, IEEE T INFORM THEORY, V28, P639
[8]   ESTIMATING THE NUMBER OF SINUSOIDS IN ADDITIVE WHITE NOISE [J].
FUCHS, JJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (12) :1846-1853
[9]  
Gelb A., 1974, Applied Optimal Estimation
[10]   HIGH-ORDER FILTERS FOR ESTIMATION IN NON-GAUSSIAN NOISE [J].
HILANDS, TW ;
THOMOPOULOS, SCA .
INFORMATION SCIENCES, 1994, 80 (1-2) :149-179