Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials

被引:42
作者
Alaeian, Hadiseh [1 ]
Dionne, Jennifer A. [2 ,3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
[3] SLAC, Stanford Inst Mat & Energy Sci, Natl Accelerator Lab, Menlo Pk, CA 94025 USA
来源
OPTICS EXPRESS | 2012年 / 20卷 / 14期
关键词
COUPLED-WAVE ANALYSIS; MODES; CONDUCTIVITY; PERMEABILITY; FORMULATION; LATTICES; SPHERES; LEADS;
D O I
10.1364/OE.20.015781
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nanocrystal superlattices have emerged as a new platform for bottom-up metamaterial design, but their optical properties are largely unknown. Here, we investigate their emergent optical properties using a generalized semi-analytic, full-field solver based on rigorous coupled wave analysis. Attention is given to superlattices composed of noble metal and dielectric nanoparticles in unary and binary arrays. By varying the nanoparticle size, shape, separation, and lattice geometry, we demonstrate the broad tunability of superlattice optical properties. Superlattices composed of spherical or octahedral nanoparticles in cubic and AB(2) arrays exhibit magnetic permeabilities tunable between 0.2 and 1.7, despite having non-magnetic constituents. The retrieved optical parameters are nearly polarization and angle-independent over a broad range of incident angles. Accordingly, nanocrystal superlattices behave as isotropic bulk metamaterials. Their tunable permittivities, permeabilities, and emergent magnetism may enable new, bottom-up metamaterials and negative index materials at visible frequencies. (C) 2012 Optical Society of America
引用
收藏
页码:15781 / 15796
页数:16
相关论文
共 54 条
[1]   Optical nanotransmission lines:: synthesis of planar left-handed metamaterials in the infrared and visible regimes [J].
Alù, A ;
Engheta, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (03) :571-583
[2]   Negative effective permeability and left-handed materials at optical frequencies [J].
Alù, A ;
Salandrino, A .
OPTICS EXPRESS, 2006, 14 (04) :1557-1567
[3]   Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW B, 2006, 74 (20)
[4]   The quest for magnetic plasmons at optical frequencies [J].
Alu, Andrea ;
Engheta, Nader .
OPTICS EXPRESS, 2009, 17 (07) :5723-5730
[5]   Plasmonic and metamaterial cloaking:: physical mechanisms and potentials [J].
Alu, Andrea ;
Engheta, Nader .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (09)
[6]   Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters [J].
Andres, RP ;
Bielefeld, JD ;
Henderson, JI ;
Janes, DB ;
Kolagunta, VR ;
Kubiak, CP ;
Mahoney, WJ ;
Osifchin, RG .
SCIENCE, 1996, 273 (5282) :1690-1693
[7]   Kagome lattice - A molecular toolkit for magnetism [J].
Atwood, JL .
NATURE MATERIALS, 2002, 1 (02) :91-92
[8]   Collective resonances in gold nanoparticle arrays [J].
Auguie, Baptiste ;
Barnes, William L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[9]   Complex bound and leaky modes in chains of plasmonic nanospheres [J].
Campione, Salvatore ;
Steshenko, Sergiy ;
Capolino, Filippo .
OPTICS EXPRESS, 2011, 19 (19) :18345-18363
[10]   Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides [J].
Cao, Q ;
Lalanne, P ;
Hugonin, JP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (02) :335-338