The interaction of plant biotic and abiotic stresses: from genes to the field

被引:1128
作者
Atkinson, Nicky J. [1 ]
Urwin, Peter E. [1 ]
机构
[1] Univ Leeds, Fac Biol Sci, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England
关键词
Abiotic stress; biotic stress; hormone signalling; multiple stress; stress combination; TRANSCRIPTION FACTORS FUNCTION; PATHOGEN RESISTANCE RESPONSE; ENHANCES DISEASE RESISTANCE; ABSCISIC-ACID RESPONSES; WATER-DEFICIT STRESS; FINGER PROTEIN ZAT12; SYRINGAE PV. TOMATO; RICE OSMYB4 GENE; ORYZA-SATIVA L; SALICYLIC-ACID;
D O I
10.1093/jxb/ers100
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.
引用
收藏
页码:3523 / 3543
页数:21
相关论文
共 232 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor [J].
AbuQamar, Synan ;
Luo, Hongli ;
Laluk, Kristin ;
Mickelbart, Michael V. ;
Mengiste, Tesfaye .
PLANT JOURNAL, 2009, 58 (02) :347-360
[3]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[4]   Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici [J].
Achuo, EA ;
Prinsen, E ;
Höfte, M .
PLANT PATHOLOGY, 2006, 55 (02) :178-186
[5]   ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis [J].
Adie, Bruce A. T. ;
Perez-Perez, Julian ;
Perez-Perez, Manuel M. ;
Godoy, Marta ;
Sanchez-Serrano, Jose-J. ;
Schmelz, Eric A. ;
Solano, Roberto .
PLANT CELL, 2007, 19 (05) :1665-1681
[6]   Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp strain isolated from sunflower roots [J].
Alami, Y ;
Achouak, W ;
Marol, C ;
Heulin, T .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3393-3398
[7]   The effect of potassium nutrition on pest and disease resistance in plants [J].
Amtmann, Anna ;
Troufflard, Stephanie ;
Armengaud, Patrick .
PHYSIOLOGIA PLANTARUM, 2008, 133 (04) :682-691
[8]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[9]   Convergence and specificity in the Arabidopsis MAPK nexus [J].
Andreasson, Erik ;
Ellis, Brian .
TRENDS IN PLANT SCIENCE, 2010, 15 (02) :106-113
[10]   ROS in biotic interactions [J].
Angel Torres, Miguel .
PHYSIOLOGIA PLANTARUM, 2010, 138 (04) :414-429