The use of multiple imputation for the analysis of missing data

被引:387
作者
Sinharay, S
Stern, HS
Russell, D
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Psychol, Iowa City, IA USA
关键词
D O I
10.1037//1082-989X.6.4.317
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
This article provides a comprehensive review of multiple imputation (MI), a technique for analyzing data sets with missing values. Formally, MI is the process of replacing each missing data point with a set of m > 1 plausible values to generate m complete data sets. These complete data sets are then analyzed by standard statistical software, and the results combined, to give parameter estimates and standard errors that take into account the uncertainty due to the missing data values. This article introduces the idea behind MI, discusses the advantages of MI over existing techniques for addressing missing data, describes how to do MI for real problems, reviews the software available to implement MI, and discusses the results of a simulation study aimed at finding out how assumptions regarding the imputation model affect the parameter estimates provided by MI.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 31 条
[1]   Multiple imputation for missing data - A cautionary tale [J].
Allison, PD .
SOCIOLOGICAL METHODS & RESEARCH, 2000, 28 (03) :301-309
[2]  
Allison PD, 2001, MISSING DATA
[3]  
[Anonymous], 1997, AMOS USERS GUIDE
[4]  
[Anonymous], S PLUS 6 WIND
[5]  
BRYK AS, 1992, HIERARCHYICAL LINEAR
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
Diggle P. G., 1994, J ROY STAT SOC C, V43, P49
[8]   A Comparison of Model- and Multiple Imputation-Based Approaches to Longitudinal Analyses With Partial Missingness [J].
Duncan, Terry E. ;
Duncan, Susan C. ;
Li, Fuzhong .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1998, 5 (01) :1-21
[9]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[10]   Treatments of Missing Data: A Monte Carlo Comparison of RBHDI, Iterative Stochastic Regression Imputation, and Expectation-Maximization [J].
Gold, Michael Steven ;
Bentler, Peter M. .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2000, 7 (03) :319-355