CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila

被引:67
作者
Yucel, JK
Marszalek, JD
McIntosh, JR
Goldstein, LSB
Cleveland, DW
Philp, AV
机构
[1] Univ Calif San Diego, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[6] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
关键词
kinetochore; kinesin-like protein; CENP-E; chromosome congression; spindle assembly checkpoint;
D O I
10.1083/jcb.150.1.1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element-mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 56 条
[11]   Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores [J].
Chen, RH ;
Shevchenko, A ;
Mann, M ;
Murray, AW .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :283-295
[12]   Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores [J].
Chen, RH ;
Waters, JC ;
Salmon, ED ;
Murray, AW .
SCIENCE, 1996, 274 (5285) :242-246
[13]  
Chou TB, 1996, GENETICS, V144, P1673
[14]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[15]   A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior [J].
Clarkson, M ;
Saint, R .
DNA AND CELL BIOLOGY, 1999, 18 (06) :457-462
[16]   IDENTIFICATION OF NOVEL CENTROMERE KINETOCHORE-ASSOCIATED PROTEINS USING MONOCLONAL-ANTIBODIES GENERATED AGAINST HUMAN MITOTIC CHROMOSOME SCAFFOLDS [J].
COMPTON, DA ;
YEN, TJ ;
CLEVELAND, DW .
JOURNAL OF CELL BIOLOGY, 1991, 112 (06) :1083-1097
[17]   Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase [J].
Cooke, CA ;
Schaar, B ;
Yen, TJ ;
Earnshaw, WC .
CHROMOSOMA, 1997, 106 (07) :446-455
[18]   The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation [J].
Fang, GW ;
Yu, HT ;
Kirschner, MW .
GENES & DEVELOPMENT, 1998, 12 (12) :1871-1883
[19]  
FOE VE, 1983, J CELL SCI, V61, P31
[20]  
FOE VE, 1994, DEV RDROSOPHILA MELA