Wavelet sets in R-n

被引:108
作者
Dai, XD [1 ]
Larson, DR [1 ]
Speegle, DM [1 ]
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
关键词
Measurable Subset; Nonempty Interior; Orthogonal Wavelet; Orthonormal Wavelet; Measurable Partition;
D O I
10.1007/BF02649106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A congruency theorem is proven far an ordered pair of groups of homeomorphisms of a metric space satisfying an abstract dilation-translation relationship. A corollary is the existence of wavelet sets, and hence of single-function wavelets, for arbitrary expansive matrix dilations on L-2(R-n). Moreover for any expansive matrix dilation, it is proven that there are sufficiently many wavelet sets to generate the Borel structure of R-n.
引用
收藏
页码:451 / 456
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[2]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[3]  
DAI X, IN PRESS MEMOIRS AMS
[4]  
Dai XD, 1996, MICH MATH J, V43, P81
[5]  
DAUBECHIES I, 1992, CBMS, V61
[6]  
Fang X., 1996, J. Fourier Anal. Appl., V2, P315
[7]  
Hernandez E., 1996, J. Fourier Anal. Appl., V2, P329
[8]  
HERNANDEZ E, IN PRESS J FOURIER A
[9]  
ROBINSON C, 1995, DYNAMICAL SYSTEMS
[10]  
SPEEGLE D, S ELEMENTARY WAVELET