Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na+ channels

被引:40
作者
Vedantham, V
Cannon, SC
机构
[1] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Program Neurosci, Div Med Sci, Boston, MA 02114 USA
[3] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02114 USA
关键词
D O I
10.1016/S0006-3495(00)76834-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Mutations in segment IVS6 of voltage-gated Nai channels affect fast-inactivation, slow-inactivation, local anesthetic action, and batrachotoxin (BTX) action. To detect conformational changes associated with these processes, we substituted a cysteine for a valine at position 1583 in the rat adult skeletal muscle sodium channel alpha-subunit, and examined the accessibility of the substituted cysteine to modification by 2-aminoethyl methanethiosulfonate (MTS-EA) in excised macropatches. MTS-EA causes an irreversible reduction in the peak current when applied both internally and externally, with a reaction rate that is strongly voltage-dependent. The rate increased when exposures to MTS-EA occurred during brief conditioning pulses to progressively more depolarized voltages, but decreased when exposures occurred at the end of prolonged depolarizations, revealing two conformational changes near site 1583, one coupled to fast inactivation, and one tightly associated with slow inactivation. Tetraethylammonium, a pore blocker, did not affect the reaction rate from either direction, while BTX, a lipophilic activator of sodium channels, completely prevented the modification reaction from occurring from either direction. We conclude that there are two inactivation-associated conformational changes in the vicinity of site 1583, that the reactive site most likely faces away from the pore, and that site 1583 comprises part of the BTX receptor.
引用
收藏
页码:2943 / 2958
页数:16
相关论文
共 41 条
[1]   External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels [J].
Balser, JR ;
Nuss, HB ;
Chiamvimonvat, N ;
PerezGarcia, MT ;
Marban, E ;
Tomaselli, GF .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 494 (02) :431-442
[2]  
Bénitah JP, 1999, J NEUROSCI, V19, P1577
[3]   FUNCTIONAL EXPRESSION OF SODIUM-CHANNEL MUTATIONS IDENTIFIED IN FAMILIES WITH PERIODIC PARALYSIS [J].
CANNON, SC ;
STRITTMATTER, SM .
NEURON, 1993, 10 (02) :317-326
[4]   Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation [J].
Cha, A ;
Ruben, PC ;
George, AL ;
Fujimoto, E ;
Bezanilla, F .
NEURON, 1999, 22 (01) :73-87
[5]   Modulation of Na+ channel inactivation by the beta(1) subunit: A deletion analysis [J].
Chen, CF ;
Cannon, SC .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1995, 431 (02) :186-195
[6]   Impaired slow inactivation in mutant sodium channels [J].
Cummins, TR ;
Sigworth, FJ .
BIOPHYSICAL JOURNAL, 1996, 71 (01) :227-236
[7]  
Derra E, 1999, BIOPHYS J, V76, pA194
[8]   Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker [J].
Hayward, LJ ;
Brown, RH ;
Cannon, SC .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 107 (05) :559-576
[9]   Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis [J].
Hayward, LJ ;
Brown, RH ;
Cannon, SC .
BIOPHYSICAL JOURNAL, 1997, 72 (03) :1204-1219