Neonatal nutrition: Metabolic programming of pancreatic islets and obesity

被引:67
作者
Srinivasan, M
Laychock, SG
Hill, DJ
Patel, MS
机构
[1] SUNY Buffalo, Sch Med & Biomed Sci, Dept Biochem, Buffalo, NY 14214 USA
[2] SUNY Buffalo, Sch Med & Biomed Sci, Dept Pharmacol & Toxicol, Buffalo, NY 14214 USA
[3] St Josephs Hlth Ctr, Lawson Res Inst, Dept Physiol, London, ON N6A 5A5, Canada
[4] St Josephs Hlth Ctr, Lawson Res Inst, Dept Pediat, London, ON N6A 5A5, Canada
关键词
high carbohydrate; early nutrition; islets; insulin; obesity; metabolic programming;
D O I
10.1177/153537020322800102
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Obese individuals are more likely to suffer from diseases termed the "metabolic syndrome," which includes type 2 diabetes. It is now recognized that early life dietary experiences play an important role in the etiology of such diseases. In this context, the consequences of a high carbohydrate (HC) dietary intervention in neonatal rats is being studied in our laboratory. Artificial rearing of 4-day-old rat pups on a HC milk formula up to Day 24 results in the immediate onset of hyperinsulinemia, which persists throughout the period of dietary intervention. Several adaptations at the biochemical, cellular, and molecular levels in the islets of these HC rats support the onset and persistence of the hyperinsulinemic condition during this period. Some of these adaptations include a distinct leftward shift in the insulin secretory capacity, increased hexokinase activity, increased gene expression of preproinsulin and related transcription factors and specific kinases in 12-day-old HC islets, and alterations in the number and size of islets. These adaptations are programmed and expressed in adulthood thereby sustain the hyperinsulinemic condition in the postweaning period and form the basis for adult-onset obesity. HC females spontaneously transmit the HC phenotype (chronic hyperinsulinemia and adult-onset obesity) to their progeny. Collectively, our results indicate that even a mere switch in the nature of the source of calories (from fat rich in rat milk to carbohydrate rich in the HC milk formula) during critical phases of early development in the rat results in metabolic programming of islet functions leading to chronic hyperinsulinemia (throughout life) and adult-onset obesity. This metabolic programming, once established, forms a vicious cycle because HC female rats spontaneously transmit the HC phenotype to their progeny. The results from our laboratory in the context of metabolic programming due to neonatal nutritional experiences are discussed in this review.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 40 条
[1]   Programming into adulthood of islet adaptations induced by early nutritional intervention in the rat [J].
Aalinkeel, R ;
Srinivasan, M ;
Song, F ;
Patel, MS .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (03) :E640-E648
[2]   A dietary intervention (high carbohydrate) during the neonatal period causes islet dysfunction in rats [J].
Aalinkeel, R ;
Srinivasan, M ;
Kalhan, SC ;
Laychock, SG ;
Patel, MS .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 277 (06) :E1061-E1069
[3]   FETAL ORIGINS OF CORONARY HEART-DISEASE [J].
BARKER, DJP .
BRITISH MEDICAL JOURNAL, 1995, 311 (6998) :171-174
[4]   A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring [J].
Bennis-Taleb, N ;
Remacle, C ;
Hoet, JJ ;
Reusens, B .
JOURNAL OF NUTRITION, 1999, 129 (08) :1613-1619
[5]  
Berney DM, 1997, J PATHOL, V183, P109
[6]   Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion [J].
Bratanova-Tochkova, TK ;
Cheng, HY ;
Daniel, S ;
Gunawardana, S ;
Liu, YJ ;
Mulvaney-Musa, J ;
Schermerhorn, T ;
Straub, SG ;
Yajima, H ;
Sharp, GWG .
DIABETES, 2002, 51 :S83-S90
[7]   CELL AND MOLECULAR-BIOLOGY OF THE INCRETIN HORMONES GLUCAGON-LIKE PEPTIDE-I AND GLUCOSE-DEPENDENT INSULIN RELEASING POLYPEPTIDE [J].
FEHMANN, HC ;
GOKE, R ;
GOKE, B .
ENDOCRINE REVIEWS, 1995, 16 (03) :390-410
[8]   WEANING AND GROWTH OF ARTIFICIALLY REARED RATS [J].
HALL, WG .
SCIENCE, 1975, 190 (4221) :1313-1315
[9]   PRECOCIOUS INDUCTION OF HEPATIC GLUCOKINASE AND MALIC ENZYME IN ARTIFICIALLY REARED RAT PUPS FED A HIGH-CARBOHYDRATE DIET [J].
HANEY, PM ;
ESTRIN, CR ;
CALIENDO, A ;
PATEL, MS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1986, 244 (02) :787-794
[10]   Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells [J].
Harbeck, MC ;
Louie, DC ;
Howland, J ;
Wolf, BA ;
Rothenberg, PL .
DIABETES, 1996, 45 (06) :711-717