ST-DBSCAN: An algorithm for clustering spatial-temp oral data

被引:911
作者
Birant, Derya [1 ]
Kut, Alp [1 ]
机构
[1] Dokuz Eylul Univ, Dept Comp Engn, TR-35100 Izmir, Turkey
关键词
data mining; cluster analysis; spatial-temporal data; cluster visualization; algorithms;
D O I
10.1016/j.datak.2006.01.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new density-based clustering algorithm, ST-DBSCAN, which is based on DBSCAN. We propose three marginal extensions to DBSCAN related with the identification of (i) core objects, (ii) noise objects, and (iii) adjacent clusters. In contrast to the existing density-based clustering algorithms, our algorithm has the ability of discovering clusters according to non-spatial, spatial and temporal values of the objects. In this paper, we also present a spatial-temporal data warehouse system designed for storing and clustering a wide range of spatial-temporal data. We show an implementation of our algorithm by using this data warehouse and present the data mining results. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 221
页数:14
相关论文
共 31 条
[1]   Survey of spatio-temporal databases [J].
Abraham T. ;
Roddick J.F. .
GeoInformatica, 1999, 3 (1) :61-99
[2]  
AKERST M, 1999, P ACM SIGMOD INT C M, P49
[3]  
AOYING Z, 2000, J COMPUTER SCI TECHN, V15, P509
[4]   Multidimensional index structures in relational databases [J].
Böhm, C ;
Berchtold, S ;
Kriegel, HP ;
Michel, U .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2000, 15 (01) :51-70
[5]  
Ester M., 1998, Proceedings of the Twenty-Fourth International Conference on Very-Large Databases, P323
[6]  
Ester M., 1998, KI, V12, P18
[7]  
Ester M., 1996, Proc. Second Int. Conf. Knowl. Discov. Data Min, P226, DOI DOI 10.5555/3001460.3001507
[8]  
Fisher D. H., 1987, Machine Learning, V2, P139, DOI 10.1007/BF00114265
[9]  
Guha S., 1998, SIGMOD Record, V27, P73, DOI 10.1145/276305.276312
[10]  
Guting R.H., 1994, Vldb J, V3, P357, DOI DOI 10.1007/BF01231602