Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells

被引:71
作者
Carvalho, M
Hawksworth, G
Milhazes, N
Borges, F
Monks, TJ
Fernandes, E
Carvalho, F
Bastos, M
机构
[1] Univ Porto, Fac Pharm, Dept Toxicol, CEQUP, P-4050047 Oporto, Portugal
[2] Univ Aberdeen, Dept Med & Therapeut & Biomed Sci, Aberdeen AB25 2ZD, Scotland
[3] Univ Porto, Fac Pharm, Dept Organ Chem, CEQOFFUP, P-4050047 Oporto, Portugal
[4] Univ Texas, Coll Pharm, Ctr Mol & Cellular Toxicol, Austin, TX 78712 USA
关键词
MDMA; metabolites; glutathione conjugate; rat; human; renal proximal tubular cells;
D O I
10.1007/s00204-002-0381-3
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
The metabolism of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has recently been implicated in the mechanisms underlying ecstasy-induced neurotoxicity and hepatotoxicity. However, its potential role in ecstasy-induced kidney toxicity has yet to be investigated. Thus, primary cultures of rat and human renal proximal tubular cells (PTCs) were used to investigate the cytotoxicity induced by MDMA and its metabolites methylenedioxyamphetamine (MDA), alpha-methyldopamine (alpha-MeDA), and the glutathione (GSH) conjugates 5-(glutathion-S-yl)-alpha-MeDA and 2,5-bis(glutathion-S-yl)-alpha-MeDA. Cell viability was evaluated using the mitochondrial MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. MDMA and MDA were not found to be toxic to either rat or human PTCs at any concentration tested (100-800 muM). In contrast, 800 muM a-MeDA caused 60% and 40% cell death in rat and human PTCs, respectively. Conjugation of alpha-MeDA with GSH resulted in the formation of even more potent nephrotoxicants. Thus, exposure of rat and human PTC monolayers to 400 muM 5-(glutathion-S-yl)-alpha-MeDA caused approximately 80% and 70% cell death, respectively. 5-(Glutathion-S-yl)-alpha-MeDA (400 muM) was more toxic than 2,5-bis(glutathion-S-yl)-alpha-MeDA to rat renal PTCs but equally potent in human renal PTCs. Pre-incubation of rat PTCs with either acivicin, an inhibitor of gamma-glutamyl transpeptidase (gamma-GT), or bestatin, an inhibitor of aminopeptidase M, resulted in increased toxicity of 5-(glutathion-S-yl)-alpha-MeDA but had no effect on 2,5-bis(glutathion-S-yl)-alpha-MeDA-mediated cytotoxicity. The present data provide evidence that metabolism is required for the expression of MDMA-induced renal toxicity in vitro. In addition, metabolism of 5-(glutathion-S-yl)-alpha-MeDA by gamma-GT and aminopeptidase M to the corresponding cysteinS-yl-glycine and/or cystein-S-yl conjugates is likely to be associated with detoxication of this compound. Thus, it appears that toxicity induced by thioether metabolites of ecstasy at the apical membrane of renal proximal tubular cells is the result of extracellular events, presumably redox cycling.
引用
收藏
页码:581 / 588
页数:8
相关论文
共 41 条
[1]   STUDIES ON THE EFFECTS OF L(ALPHA-S,5S)-ALPHA- AMINO-3-CHLORO-4,5-DIHYDRO-5-ISOXAZOLEACETIC ACID (AT-125) ON 4-AMINOPHENOL-INDUCED NEPHROTOXICITY IN THE FISCHER-344 RAT [J].
ANTHONY, ML ;
BEDDELL, CR ;
LINDON, JC ;
NICHOLSON, JK .
ARCHIVES OF TOXICOLOGY, 1993, 67 (10) :696-705
[2]   Serotonergic neurotoxicity of 3,4-(±) -methylenedioxyamphetamine and 3,4-(±)-methylendioxymethamphetamine (ecstasy) is potentiated by inhibition of γ-glutamyl transpeptidase [J].
Bai, FJ ;
Jones, DC ;
Lau, SS ;
Monks, TJ .
CHEMICAL RESEARCH IN TOXICOLOGY, 2001, 14 (07) :863-870
[3]   Glutathione and N-acetylcysteine conjugates of α-methyldopamine produce serotonergic neurotoxicity:: Possible role in methylenedioxyamphetamine-mediated neurotoxicity [J].
Bai, FJ ;
Lau, SS ;
Monks, TJ .
CHEMICAL RESEARCH IN TOXICOLOGY, 1999, 12 (12) :1150-1157
[4]   Necrotizing renal vasculopathy resulting in chronic renal failure after ingestion of methamphetamine and 3,4-methylenedioxymethamphetamine ('ecstasy') [J].
Bingham, C ;
Beaman, M ;
Nicholls, AJ ;
Anthony, PP .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 1998, 13 (10) :2654-2655
[5]   Role of quinones in toxicology [J].
Bolton, JL ;
Trush, MA ;
Penning, TM ;
Dryhurst, G ;
Monks, TJ .
CHEMICAL RESEARCH IN TOXICOLOGY, 2000, 13 (03) :135-160
[6]   RENAL PROXIMAL TUBULAR CELLS IN SUSPENSION OR IN PRIMARY CULTURE AS INVITRO MODELS TO STUDY NEPHROTOXICITY [J].
BOOGAARD, PJ ;
NAGELKERKE, JF ;
MULDER, GJ .
CHEMICO-BIOLOGICAL INTERACTIONS, 1990, 76 (03) :251-292
[7]   Is hyperthermia the triggering factor for hepatotoxicity induced by 3,4-methylenedioxymethamphetamine (ecstasy)? An in vitro study using freshly isolated mouse hepatocytes [J].
Carvalho, M ;
Carvalho, F ;
Bastos, ML .
ARCHIVES OF TOXICOLOGY, 2001, 74 (12) :789-793
[8]  
COMMANDEUR JNM, 1995, PHARMACOL REV, V47, P271
[9]  
Cunningham M, 1997, Intensive Crit Care Nurs, V13, P216, DOI 10.1016/S0964-3397(97)80056-0
[10]  
Dar KJ, 1996, INTENS CARE MED, V22, P995