Parathyroid hormone stimulates receptor activator of NFκB ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein

被引:173
作者
Fu, Q
Jilka, RL
Manolagas, SC
O'Brien, CA
机构
[1] Univ Arkansas Med Sci, Ctr Osteoporosis & Metab Bone Dis, Div Endocrinol & Metab, Little Rock, AR 72205 USA
[2] Univ Arkansas Med Sci, Cent Arkansas Vet Healthcare Syst, Little Rock, AR 72205 USA
关键词
D O I
10.1074/jbc.M208494200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Parathyroid hormone (PTH) stimulates osteoclast formation by binding to its receptor on stromal/osteoblastic cells and stimulating the production of receptor activator of NFkappaB ligand (RANKL) and inhibiting the expression of osteoprotegerin (OPG). However, the mechanisms through which PTH regulates these genes remain unknown. Here we report that PTH stimulated RANKL gene transcription and increased RANKL mRNA stability in murine stromal/osteoblastic cells stably expressing human PTH/PTH-related protein receptor 1. PTH also potently suppressed OPG mRNA in these cells. Cycloheximide did not block the effects of PTH on RANKL but did inhibit the suppression of OPG mRNA. Activation of protein kinase A (PKA) was necessary and sufficient for the effect of PTH on both genes. Conditional expression of a dominant-negative form of the transcription factor CREB, but not c-fos or Runx2, significantly reduced PTH stimulation of RANKL. CREB activity was also required for full stimulation of RANKL by oncostatin M or 1,25-dihydroxyvitamin D-3. Dominant-negative forms of CREB and c-fos reduced the suppression of OPG by PTH. These results demonstrate that PTH directly stimulates RANKL expression via a PKA-CREB pathway and that CREB may be a central regulator of RANKL expression. Furthermore, they suggest that PTH suppression of OPG involves CREB and c-fos.
引用
收藏
页码:48868 / 48875
页数:8
相关论文
共 54 条
[1]   A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos [J].
Ahn, S ;
Olive, M ;
Aggarwal, S ;
Krylov, D ;
Ginty, DD ;
Vinson, C .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (02) :967-977
[2]   A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function [J].
Anderson, DM ;
Maraskovsky, E ;
Billingsley, WL ;
Dougall, WC ;
Tometsko, ME ;
Roux, ER ;
Teepe, MC ;
DuBose, RF ;
Cosman, D ;
Galibert, L .
NATURE, 1997, 390 (6656) :175-179
[3]   Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFκB [J].
Cappellen, D ;
Luong-Nguyen, NH ;
Bongiovanni, S ;
Grenet, O ;
Wanke, C ;
Susa, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21971-21982
[4]  
Chan HM, 2001, J CELL SCI, V114, P2363
[5]   Specificity and mechanism of action of some commonly used protein kinase inhibitors [J].
Davies, SP ;
Reddy, H ;
Caivano, M ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2000, 351 (351) :95-105
[6]   Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP [J].
de Rooij, J ;
Zwartkruis, FJT ;
Verheijen, MHG ;
Cool, RH ;
Nijman, SMB ;
Wittinghofer, A ;
Bos, JL .
NATURE, 1998, 396 (6710) :474-477
[7]   Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB [J].
Deak, M ;
Clifton, AD ;
Lucocq, JM ;
Alessi, DR .
EMBO JOURNAL, 1998, 17 (15) :4426-4441
[8]   A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development [J].
Ducy, P ;
Starbuck, M ;
Priemel, M ;
Shen, JH ;
Pinero, G ;
Geoffroy, V ;
Amling, M ;
Karsenty, G .
GENES & DEVELOPMENT, 1999, 13 (08) :1025-1036
[9]   Increasing membrane-bound MCSF does not enhance OPGL-driven osteoclastogenesis from marrow cells [J].
Fan, X ;
Fan, D ;
Gewant, H ;
Royce, CL ;
Nanes, MS ;
Rubin, J .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 280 (01) :E103-E111
[10]   The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development [J].
Fata, JE ;
Kong, YY ;
Li, J ;
Sasaki, T ;
Irie-Sasaki, J ;
Moorehead, RA ;
Elliott, R ;
Scully, S ;
Voura, EB ;
Lacey, DL ;
Boyle, WJ ;
Khokha, R ;
Penninger, JM .
CELL, 2000, 103 (01) :41-50