Analysis of a nonconvex problem related to signal selective smoothing

被引:18
作者
Chipot, M
March, R
Rosati, M
Caffarelli, GV
机构
[1] CNR,IST APPLICAZ CALCOLO,I-00161 ROME,ITALY
[2] UNIV ROMA LA SAPIENZA,DIPARTIMENTO MC MO MAT,I-00161 ROME,ITALY
关键词
D O I
10.1142/S0218202597000189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some properties of a nonconvex variational problem. We fail to attain the infimum of the functional that has to be minimized. Instead, minimizing sequences develop gradient oscillations which allow them to reduce the value of the functional. We show an existence result for a perturbed nonconvex version of the problem, and me study the qualitative properties of the corresponding minimizer. The pattern of the gradient oscillations for the original nonperturbed problem is analyzed numerically.
引用
收藏
页码:313 / 328
页数:16
相关论文
共 9 条
[1]  
Blake A., 1987, Visual Reconstruction
[2]  
CERIMELE MM, 1995, 28 IACCNR
[3]   NUMERICAL-ANALYSIS OF OSCILLATIONS IN NONCONVEX PROBLEMS [J].
CHIPOT, M .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :747-767
[4]   NUMERICAL APPROXIMATIONS IN VARIATIONAL-PROBLEMS WITH POTENTIAL WELLS [J].
CHIPOT, M ;
COLLINS, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :1002-1019
[5]   NUMERICAL APPROXIMATION OF THE SOLUTION OF A VARIATIONAL PROBLEM WITH A DOUBLE WELL POTENTIAL [J].
COLLINS, C ;
KINDERLEHRER, D ;
LUSKIN, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :321-332
[6]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[7]   CONSTRAINED RESTORATION AND THE RECOVERY OF DISCONTINUITIES [J].
GEMAN, D ;
REYNOLDS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (03) :367-383
[8]  
GEMAN S, 1987, P 46 SESS INT STAT I, V52
[9]  
KINDERLEHRER D, 1980, INTRO VARIATIONAL IN