Deep Belief Net Learning in a Long-Range Vision System for Autonomous Off-Road Driving

被引:46
作者
Hadsell, Raia [1 ]
Erkan, Ayse [1 ]
Sermanet, Pierre [1 ,2 ]
Scoffier, Marco [2 ]
Muller, Urs [2 ]
LeCun, Yann [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[2] Net Scale Technol, Morganville, NJ USA
来源
2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS | 2008年
关键词
D O I
10.1109/IROS.2008.4651217
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a learning-based approach for long-range vision that is able to accurately classify complex terrain at distances up to the horizon, thus allowing high-level strategic planning. A deep belief network is trained with unsupervised data and a reconstruction criterion to extract features from an input image, and the features are used to train a realtime classifier to predict traversability. The online supervision is given by a stereo module that provides robust labels for nearby areas up to 12 meters distant. The approach was developed and tested on the LAGR mobile robot.
引用
收藏
页码:628 / 633
页数:6
相关论文
共 16 条
[1]  
[Anonymous], P SPIE AER C
[2]  
DAHLKAMP H, 2006, P ROB SCI SYST RSS J
[3]  
GOLDBERG S, 2002, IEEE AER C
[4]  
GRUDIC G, 2006, P ROB SCI SYST RSS A
[5]  
HADSELL R, 2007, P ROB SCI SYST RSS
[6]  
HAPPOLD M, 2006, P ROB SCI SYST RSS A
[7]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[8]  
KELLY A, 1998, INT C ROB AUT WORKSH
[9]  
Kim Dongshin, 2006, P INT C ROB AUT ICRA
[10]   STEREO VISION AND NAVIGATION IN BUILDINGS FOR MOBILE ROBOTS [J].
KRIEGMAN, DJ ;
TRIENDL, E ;
BINFORD, TO .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1989, 5 (06) :792-803