A numerical method for large-eddy simulation in complex geometries

被引:352
作者
Mahesh, K [1 ]
Constantinescu, G
Moin, P
机构
[1] Univ Minnesota, Dept Aerosp Engn & Mech, Minneapolis, MN 55455 USA
[2] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
关键词
large-eddy simulation; unstructured grids; complex geometries; energy-conserving schemes; gas-turbine combustor;
D O I
10.1016/j.jcp.2003.11.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss the development of a numerical algorithm, and solver capable of performing large-eddy simulation in the very complex geometries often encountered in industrial applications. The algorithm is developed for unstructured hybrid grids, is non-dissipative, yet robust at high Reynolds numbers on highly skewed grids. Simulation results for a variety of flows are presented. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 240
页数:26
相关论文
共 35 条
[1]   AN APPLICATION OF NETWORK THEORY TO THE SOLUTION OF IMPLICIT NAVIER-STOKES DIFFERENCE-EQUATIONS [J].
AMIT, R ;
HALL, CA ;
PORSCHING, TA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 40 (01) :183-201
[2]  
Arakawa A., 1966, J COMPUT PHYS, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, 10.1016/0021-9991(66)90015-5]
[3]  
DECONINCK H, 1992, SPECIAL COURSE UNSTR, P787
[4]  
FROMM JE, 1963, PHYS FLUIDS, V6, P175
[5]   A DYNAMIC SUBGRID-SCALE EDDY VISCOSITY MODEL [J].
GERMANO, M ;
PIOMELLI, U ;
MOIN, P ;
CABOT, WH .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (07) :1760-1765
[6]   HIGH-RE SOLUTIONS FOR INCOMPRESSIBLE-FLOW USING THE NAVIER STOKES EQUATIONS AND A MULTIGRID METHOD [J].
GHIA, U ;
GHIA, KN ;
SHIN, CT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (03) :387-411
[7]  
HAM F, IN PRESS ANN RES BRI
[8]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&
[9]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .8. THE GALERKIN LEAST-SQUARES METHOD FOR ADVECTIVE-DIFFUSIVE EQUATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
HULBERT, GM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 73 (02) :173-189
[10]   The orthogonal decomposition theorems for mimetic finite difference methods [J].
Hyman, JM ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :788-818