Multi-dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data

被引:82
作者
Andermatt, Simon [1 ]
Pezold, Simon [1 ]
Cattin, Philippe [1 ]
机构
[1] Univ Basel, Dept Biomed Engn, Allschwil, Switzerland
来源
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS | 2016年 / 10008卷
关键词
Deep learning; GRU; Multi dimensional RNN; Segmentation;
D O I
10.1007/978-3-319-46976-8_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a supervised deep learning method to automatically segment 3D volumes of biomedical image data. The presented method takes advantage of a neural network with the main layers consisting of multi-dimensional gated recurrent units. We apply an on-the-fly data augmentation technique which allows for accurate estimations without the need for either a huge amount of training data or advanced data pre- or postprocessing. We show that our method performs amongst the leading techniques on a popular brain segmentation challenge dataset in terms of speed, accuracy and memory efficiency. We describe in detail advantages over a similar method which uses the well-established long short-term memory.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 2015, P 28 INF C NEUR INF
[2]  
[Anonymous], 2014, ARXIV14123555CS
[3]  
[Anonymous], ARXIV150304069CS
[4]  
[Anonymous], 2016, ARXIV160606650CS
[5]  
[Anonymous], 2012, ARXIV12125701CS
[6]  
Chetlur S., 2014, ARXIV NEURAL EVOLUTI
[7]  
Cho K., 2014, P 2014 C EMP METH NA, P1724, DOI [DOI 10.3115/V1/D14-1179, 10.3115/v1/D14-1179]
[8]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[9]  
Jia Y., 2014, P 22 ACM INT C MULT, P675
[10]  
Jozefowicz R, 2015, PR MACH LEARN RES, V37, P2342