One of the major goals of the European Stress Physiology and Climate Experiment (ESPACE-wheat) was to investigate the sensitivity of wheat growth and productivity to the combined effects of changes in CO2 concentration, ozone and other physiological stresses. Experiments were performed at different sites throughout Europe, over three consecutive growing-seasons using open-top chambers. This paper summarizes the main experimental findings of the effects of CO2 enrichment and other factors i.e. ozone (O-3), drought stress or nitrogen supply on the biomass and yield of spring wheat (Triticum aestivum cv. Minaret). Final harvest data from different sites and seasons were statistically analysed: (1) to identify main effects and interactions between experimentally controlled factors; and (2) to evaluate quantitative relationships between environmental variables and biological responses. Generally, 'Minaret' wheat did not respond significantly to O-3, suggesting that this cultivar is relatively tolerant to the O-3 levels applied. The main effect of CO2 was a significant enhancement of grain yield and above-ground biomass in almost all experiments. Significant interactions between CO2 and other factors were not common, although modifications in different N- and water supplies also led to significant effects on grain yield and biomass. In addition, climatic factors (in particular: mean air temperature and global radiation) were identified as important co-variables affecting grain yield or biomass, respectively. On average, the yield increase as a result of a doubling of [CO2] was 35% compared with that observed at ambient CO2 concentrations. However, linear regressions of grain yield or above-ground biomass for individual experiments revealed a large variability in the quantitative responses of 'Minaret' wheat to CO2 enrichment (yield increase ranging from 11 to 121%). Hence, CO2 responsiveness was shown to differ considerably when the same cultivar of wheat was grown at different European locations. Multiple regression analyses performed to evaluate the relative importance of the measured environmental parameters on grain yield indicated that although yield was significantly related to five independent variables (24 h mean CO2 concentration, 12 h mean O-3 concentration, temperature, radiation, and drought stress), a large proportion of the observed variability remained unexplained. (C) 1999 Elsevier Science B.V. All rights reserved.