A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

被引:526
作者
Pasta, Mauro [1 ]
Wessells, Colin D. [1 ]
Huggins, Robert A. [1 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
关键词
LITHIUM-ION BATTERIES; PRUSSIAN BLUE; POLYPYRROLE; REDUCTION; SODIUM; FILMS; PERFORMANCE; STABILITY; NA4MN9O18; INSERTION;
D O I
10.1038/ncomms2139
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene) [J].
Aasmundtveit, KE ;
Samuelsen, EJ ;
Inganäs, O ;
Pettersson, LAA ;
Johansson, T ;
Ferrer, S .
SYNTHETIC METALS, 2000, 113 (1-2) :93-97
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   Chemical reduction method for industrial application of undoped polypyrrole electrodes in lithium-ion batteries [J].
Bengoechea, M. ;
Boyano, I. ;
Miguel, O. ;
Cantero, I. ;
Ochoteco, E. ;
Pomposo, J. ;
Grande, H. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :585-591
[4]   POLYPYRROLE AS AN ELECTRODE MATERIAL FOR SECONDARY LITHIUM CELLS [J].
BITTIHN, R ;
ELY, G ;
WOEFFLER, F .
MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA, 1987, 8 :51-59
[5]   Polyaniline and polypyrrole:: A comparative study of the preparation [J].
Blinova, Natalia V. ;
Stejskal, Jaroslav ;
Trchova, Miroslava ;
Prokes, Jan ;
Omastova, Maria .
EUROPEAN POLYMER JOURNAL, 2007, 43 (06) :2331-2341
[6]   SOME ASPECTS OF THE SURFACE-CHEMISTRY OF CARBON-BLACKS AND OTHER CARBONS [J].
BOEHM, HP .
CARBON, 1994, 32 (05) :759-769
[7]   Electrochemical responses from surface oxides present on HNO3-treated carbons [J].
Cheng, PZ ;
Teng, HS .
CARBON, 2003, 41 (11) :2057-2063
[8]   Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions [J].
Dostal, A ;
Kauschka, G ;
Reddy, SJ ;
Scholz, F .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 406 (1-2) :155-163
[9]  
Elkind E., 2011, 2020 STRATEGIC ANAL
[10]   THE POTENTIAL DEPENDENCE OF ELECTRICAL-CONDUCTIVITY AND CHEMICAL CHARGE STORAGE OF POLY(PYRROLE) FILMS ON ELECTRODES [J].
FELDMAN, BJ ;
BURGMAYER, P ;
MURRAY, RW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (04) :872-878